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Abstract

The open subsets of the Zariski topology are often too big to apply some
concepts of differential geometry to the theory of schemes. The notion of a
Grothendieck topology (or site) on a category, which generalizes the open cov-
erings of a topological space, enable us to work with finer topologies. The goal
of this project is to introduce the concept of site and to apply it to the cate-
gory of S-schemes. We will present different topologies on this and state some
applications:

• the étale topology is related to Galois theory;

• the fpqc is useful to study some descent problem;

• the fppf topology allow us to study the representability of the relative
Picard functor.



5

In this project, we use the following conventions:

• All rings are assumed to be commutative with unit.

• A compact topological space is what many authors call quasi-compact: when
I speak about a compact topological space, I do not assume any Hausdorff
condition.

1 Prerequisites

1.1 Fibred product and fiber of a morphism over a point

Definition 1.1 (Pullback)
Let f : X −→ Z and g : Y −→ Z be two morphisms of a category C . The
pullback of f and g (if it exists) is an object W and a pair of two morphisms
f ′ : W −→ Y and g′ : W −→ X of C such that g ◦ f ′ = f ◦ g′. Moreover, these
morphisms must satisfy the following universal property: for every object W ′ of
C and every pair of morphisms f ′′ : W ′ −→ Y and g′′ : W ′ −→ X such that
f ◦ g′′ = g ◦ f ′′, there exists a unique morphism h : W ′ −→W which makes the
following diagram commute:

W ′ f ′′

��

g′′

##

h

!!
W

g′

��

f ′
// Y

g

��
X

f // Z

We say sometimes that W is the product of X and Y over Z.

Definition 1.2 (Fibred product of two S-schemes)
Let X and Y be two S-schemes. Then, the fibred product of X and Y over S,
written X ×S Y , is the pullback of X and Y over S.

Remark 1.3
If S = SpecR, we may write X ×R Y instead of X ×S Y .

Proposition 1.4
Let f : X −→ S and g : Y −→ S be two S-schemes. Then, their fibred product
over S exists.

Proof. Different steps of the construction:

(i) Affine case.

(ii) For some open subset U ofX, use the productX×SY to construct U×SY .

(iii) Construct X ×S Y from a collection Xi ×S Y , where the Xi’s form an
open covering of X.

(iv) X and Y are any schemes and S is affine.

(v) Conclusion.

Details:

(i) First, we consider the case where X,Y and S are affine. Hence, we have
some ring morphisms ϕ : C −→ A and ψ : C −→ A. Thus, we can consider
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the tensor product A⊗C B and the obvious maps ϕ̃ : B −→ A⊗C B and
ψ̃ : A −→ A⊗CB. Hence, we have the two following commutative squares:

A⊗C B B
ϕ̃

oo SpecA⊗C B //

��

SpecB

��

Spec

++

A

ψ̃

OO

C
ϕoo

ψ

OO

SpecA // SpecC

Using the properties of the tensor product and the equivalence of cate-
gories between the category of commutative unit rings and the categories
of affine schemes gives the required result.

(ii) Suppose that we have the fibred product of X and Y over S and that
U ⊂ X is an open subset. We claim that p−1

X (U) is a fibred product for
U and Y over S. Suppose we are given a scheme Z and two morphisms
f̃ : Z −→ U and g̃ : Z −→ Y such that g ◦ g̃ = f ◦ i ◦ f̃ (where i : U −→ X
is the inclusion). We have the following diagram:

Z g̃

''

f̃

  

θ

((
p−1
X (U)

pX

∣∣
p
−1
X

(U)

��

� � // X ×S Y pY
//

pX

��

Y

g

��
U �
�

i
// X

f
// S,

where θ is induced by the universal property of the fibred product. Since
f̃(Z) ⊂ U , we have θ(Z) ⊂ p−1

X (U). Therefore, the morphism θ factors
through p−1

X (U), as required. It is clear that this morphism is unique.

(iii) Suppose we are given the fibred products Xi×S Y . We want to glue these
schemes to obtain X ×S Y . For i and j, denote by Xij the intersection
Xi ∩Xj and by Uij the preimage p−1

Xi
(Xij) which is the fibred product of

Xij and Y over S, by the previous step. Now, Uji is also the fibred product
of Xij and Y over S which means that we have an unique isomorphism
ϕij : Uij −→ Uji. Using the uniqueness of the map in the universal
property, one can show that this isomorphisms are compatible. Hence, we
can glue the schemes Xi ×S Y via the isomorphisms ϕij to get a scheme
P (we get the projections pX : P −→ Y and pY : P −→ Y by gluing the
projections from Xi ×S Y to Xi and Y ).
Let Z be a scheme and let f̃ : Z −→ U and g̃ : Z −→ Y be two morphisms
such that g ◦ g̃ = f ◦ f̃ . If we let Zi = f̃−1(Xi), then we get a collection
of morphisms

Zi // Xi ×S Y �
� // X ×S Y

which are compatible with f̃
∣∣
Zi

: Zi −→ Xi and g̃ : Z −→ Y . Gluing these
morphisms gives the required morphism θ : Z −→ P which is compatible
with f̃ and g̃. Moreover, if θ̃ : Z −→ P is another compatible morphism,
then we have θi = θ̃i which implies that θ = θ̃, as required. Hence, P
satisfies the universal property of the fibred product of X and Y over S.

(iv) Using the previous step we can construct the fibred product of X and Y
over S if S is affine.
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(v) Let Si be an affine covering of S and let Xi = f−1(Si) and Yi = g−1(Si).
The previous point implies that the fibred products Xi ×Si Yi exist. If
Z is a scheme and if f̃ : Z −→ Xi and g̃ : Z −→ Y are two compatible
morphisms (with Xi −→ S and Y −→ S), then g̃ must factor through
Yi. Hence, Xi×Si Yi satisfies the universal property of the fibred product
of Xi and Y over S. Gluing the schemes Xi ×S Y (see (iii)) gives the
required product X ×S Y .

Example 1.5
Let X = AnK , Y = AmK and Z = SpecK. Then, we have

X ×K Y ∼= Spec (K[x1, . . . , xn]⊗K K[y1, . . . , ym]) ∼= An+m
K .

Definition 1.6 (Base change)
Let f : X −→ Y and g : Y ′ −→ Y be two morphisms of schemes. We say that
the morphism X ×Y Y ′ −→ Y ′ is the base change of f by g.

Definition 1.7 (Property stable under base change)
Let (P ) be a property of morphisms of schemes. We say that (P ) is stable under
base change if for each morphism f : X −→ Y which satisfies (P ), then every
base change of f by a morphism g also satisfies (P ).

Examples 1.8
We will see that the followings properties are stable under base change:

(i) being flat (Proposition 2.20);

(ii) being surjective (Corollary 1.18);

(iii) being (locally) of finite type (Proposition 1.25);

(iv) being unramified or étale (Proposition 4.39);

(v) being quasi-compact (Proposition 5.5);

(vi) being surjective (Corollary 1.18);

(vii) being fpqc (Proposition 5.6).

Proposition 1.9
Let X −→ Z and Y −→ Z be two closed immersion into an affine space Z =
SpecR. Then, the underlying topological space of X ×Z Y is isomorphic with
X ∩ Y .

Proof. We know (see [Har77, Corollary II.5.9]) that there exists two ideals I
and J of R such that X ∼= SpecR/I and Y ∼= SpecR/J . Then, we have
X ×Z Y ∼= Spec

(
R/(I + J)

)
, as required.

Example 1.10
Let K be an algebraically closed field (with characteristic different from two).
TakeX = Spec

(
K[x, y]/〈x2 + y2 − 1〉

)
(the unit circle), Y = Spec

(
K[x, y]/〈x〉

)
(the y-axis), and Z = A2

K . The number of closed points of intersection X ∩ Y ,
should be two (points corresponding to (0,±1)). We have

K[x, y]/〈x2 + y2 − 1〉 ⊗K[x,y] K[x, y]/〈x〉 ∼=
A.2

K[x, y]/〈x2 + y2 − 1, x〉
∼= K[y]/〈y2 − 1〉 ∼= K ×K,

where A.2 denotes the Proposition A.2 of the appendix. Now, SpecK ×K has
two closed points, as required.
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Definition 1.11 (Fiber over a point)
Let f : X −→ Y be a morphism of schemes and let y ∈ Y . We define the fiber
over y to be the scheme Xy = X ×Y Spec k(y), where k(y) denotes the residue
field of y on Y and Spec k(y) −→ Y is the canonical morphism.

Example 1.12
Consider the morphism f : X = SpecQ[x, y]/〈y2 − x〉 −→ A1

Q, induced by
the obvious morphism Q[x] �

� //Q[x, y] //Q[x, y]/〈y2 − x〉 (one can think
of the projection of the parabola y2 = x on the x-axis). Let us compute some
fibers:

Fiber over t > 0 We have:

X〈x−1〉 = X ×A1
Q

Specκ(〈x− 1〉)

∼= Spec
(
Q[x, y]/〈y2 − x〉 ⊗Q[x] Q[x]〈x−t〉/Q[x]Q[x]〈x−t〉

)
∼= Spec

(
Q[x, y]/〈y2 − x〉 ⊗Q[x] Q[x]/〈x− t〉

)
∼=
A.2

Spec
(
Q[x, y]/〈y2 − x, x− t〉

)
∼= Spec

(
Q[y]/〈y2 − t〉

)
∼= Spec(Q×Q),

where A.2 denotes the Proposition A.2 of the appendix. Therefore, the
fiber over t has only two elements: two closed points corresponding to
(t,±
√
t).

Fiber over 0 In a similar way, we find

X〈0〉 ∼= Spec
(
Q[y]/〈y2〉

)
.

The only prime ideal of Q[y]/〈y2〉 is the 〈y〉/〈y2〉 one which corresponds to
y = 0.

Example 1.13
Let f : X = SpecZ[i] −→ Y = SpecZ. We want to compute the fibers over
different points of Y .

Fiber over the generic point We have

X0
∼= Spec

(
Z[i]⊗Z Q) ∼= SpecQ[i].

Hence, the fiber over 0 has only one element.
Fiber over a prime p We have

X〈p〉 ∼= Spec
(
Z[i]⊗Z Fp

) ∼=
A.2

(
Fp[x]/〈x2 + 1〉

)
.

Now, we consider three cases:
(i) If p = 2, thenX2 has only one point, corresponding to 〈x+1〉/(x+ 1)2.

(ii) If p ≡ 1 mod 4, then −1 = a2 and X〈p〉 ∼= SpecFp × Fp.
(iii) If p ≡ 3 mod 4, then x2 + 1 is irreducible in Fp and X〈p〉 ∼= SpecFp.

Proposition 1.14
Let f : X −→ Y be a morphism of schemes and y ∈ Y . Then, the projection
p : X ×Y Spec k(y) −→ X induces a homeomorphism from Xy to f−1(y).

Proof. See [Liu06, Proposition 3.1.16].

Proposition 1.15
Let f : X −→ Y be a morphism of schemes and let x ∈ X and y = f(x). Then,
we have OXy,x′ ∼= OX,x/myOX,x, where x

′ ∈ Xy corresponds to x.
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Proof. We can consider the case where X = SpecB, Y = SpecA, x = p ∈
SpecB and y = q ∈ SpecA. Then, x′ ∈ Xy correspond to the prime ideal
p⊗A κ(y) of B ⊗A κ(y) and we have

OXy,x′ ∼=
(
B ⊗A κ(y)

)
(p⊗Aκ(y))

∼= Bp ⊗Aq
κ(y) ∼=

A.2
Bp/qBp

∼= OX,x/myOX,x.

Lemma 1.16
Let f : X → S and g : Y → S be morphisms of schemes with the same target.
Points z of X ×S Y are in bijective correspondence to quadruples

(x, y, s, p)

where x ∈ X, y ∈ Y , s ∈ S are points with f(x) = s, g(y) = s and p is a
prime ideal of the ring κ(x)⊗κ(s) κ(y). The residue field of z corresponds to the
residue field of the prime p.

Proof. See [Aut, Schemes, Lemma 17.5].

Corollary 1.17
Let X //S Yoo be two S-schemes. Let x ∈ X and let y ∈ Y . Then, there
exists z ∈ X ×S Y such that z is mapped to x and y under the projections if
and only if x and y lie over the same point s ∈ S.

Corollary 1.18
Surjectivity is stable under base change.

Proof. Let f : X −→ Y be a morphism of S-schemes and let S′ −→ S be a
morphism of schemes. We have the following commutative diagram:

XS′

fS′ $$

p //

��

X

f

��
YS′

q //

zz

Y

��
S′ // S,

where XS′ is the fibred product of X and S′ over S and YS′ is the fibred
product of Y and S′ over S. Let Z ⊂ X. By the previous Lemma, we have
q−1
(
f(Z)) = fS′ ◦ p−1(Z). Taking Z = X gives the surjectivity of fS′ .

1.2 Morphisms (locally) of finite type, finite morphisms
Definition 1.19 (Morphism locally of finite type, morphism of finite type)
Let f : X −→ Y be a morphism of schemes. We say that f is locally of finite
type if there exists some affine open covering Vj = SpecBj, j ∈ J , of Y such
that f−1(Vj) =

⋃
i SpecAij for every j, where each Aij is a finitely generated

Bj-algebra. If in addition every f−1(Vj) can be covered by a finite number of
such algebras, we say that f is of finite type.

Definition 1.20 (Finite morphism)
Let f : X −→ Y be a morphism of schemes. We say that f is finite if there
exists some affine covering Vi = SpecBi of Y such that f−1(Vi) is affine equal
to SpecAi for every i and such that Ai is finitely generated as a Bi-module.

Examples 1.21 (i) The projection of the plane A2
K on A1

K is of finite type
but it is not finite.
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(ii) The projection f : SpecK[x, y]/〈x2 + y2 − 1〉 −→ A1
K is finite.

(iii) Let K ⊂ L be two fields. Then, the morphism SpecL −→ SpecK is finite
if and only if L is a finite extension of K.

(iv) Let f : X −→ Y be a morphism of finite type and x ∈ X. Then, the
morphism SpecOX,x −→ SpecOY,f(x) is not necessarily of finite type.
For example, K[x] is of finite type over K but K[x]〈x〉 is not of finite type
over K.

Proposition 1.22
Let f : X −→ Y be a morphism of schemes. Then, f is locally of finite type
if and only if for every open affine subset V = SpecB of Y , there exists a
covering of f−1(V ) consisting of affine subsets Ui = SpecAi such that each Ai
is a finitely generated B-algebra.

Proof. Let V = SpecB be an affine open subset of X. We know there exists
some affine open covering Vj = SpecBj , j ∈ J , of Y such that f−1(Vj) =⋃
i SpecAij for every j, where each Aij is a finitely generated Bj-algebra. For

each j, we choose an affine covering of V ∩ Vj by principal open subsets:

V ∩ Vj =
⋃
k

Vj,k, Vj,k = Spec
(
(Bj)bjk

)
, bjk ∈ Bj .

Now, denote by ai,jk the image of bjk in Aij . Now, we have

f−1
(

Spec
(
(Bj)bjk

))
= Spec

(
(Aij)ai,jk

)
and each (Aij)ai,jk

is a finitely generated (Bj)bjk
-algebra. To summarize: we can

cover V by open affine subsets B̃r such that each f−1
(
B̃r
)
is covered by open

affine subsets Ãr,s with Ãr,s a finitely generated B̃r-algebra. Now, we have to
show that all these Ãr,s are finitely generated B-algebra, which is just Lemma
A.4.
The converse is clear.

It is easy to prove the following similar statement for finite morphisms:

Proposition 1.23
Let f : X −→ Y be a morphism of schemes. Then, f is locally of finite type if
and only if for every open affine subset V = SpecB of Y , there exists a finite
covering of f−1(V ) consisting of affine subsets Ui = SpecAi such that each Ai
is a finitely generated B-algebra.

Corollary 1.24
Let f : X −→ Y and g : Y −→ Z be two morphism of (locally) finite type.
Then, g ◦ f is (locally) of finite type.

Proposition 1.25
Any base change of a morphism (locally) of finite type is (locally) of finite type.

Proof. Let f : X −→ Y be a morphism locally of finite type and let g : Z −→ Y
be a morphism of schemes. We have to show that pZ : X ×Y Z −→ Z is locally
of finite type. We consider an open affine covering Yi = SpecCi of Y and
we let Xi = f−1(Yi) and Zi = g−1(Yi). We choose some open affine covering
Zik = SpecBik of Zi and Xij = SpecAij of Xi (by hypothesis, each Aij is a
Ci-algebra of finite type). Using the properties of the fibred product, we see
that p−1(Zik) = X×Y Zik ∼= Xi×Yi Zik. Since g ◦pZ = f ◦pX , the set p−1

Z (Zik)
is covered by the open sets Xij ×Yi Zik ∼= Spec

(
Aij ⊗Ci Bik

)
. Since Aij is a

Ci-algebra of finite type, Aij ⊗Ci Bik is a Bik-algebra of finite type.
If f is of finite type, then the number of Xij is finite for each i and so the
number of Aij ⊗Ci Bik is finite for each i and each k, which implies that pZ is
of finite type.
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The following Proposition gives an interesting property of finite morphisms.

Proposition 1.26
Let f : X −→ Y be a finite morphism and y ∈ Y . Then, f−1(y) is finite.

Proof. Without loss of generality, we can suppose that f : SpecA −→ B. The
Proposition 1.14 implies that our claim is equivalent to show that Xy is finite. If
we denote by q the ideal corresponding to y, then we have Xq = SpecA⊗B k(q).
Since A is a finitely generated B-module, Xq is a finitely generated k(q)-module,
that is a finite dimensional vector space. Hence, A ⊗B k(q) is artinian and we
use Proposition A.1 to see that Xq is finite, as required.

Remark 1.27
Even if the fibers of a morphism f are all finite, f might not necessarily be finite.
For example, consider the morphism f : SpecC[x, y]/〈xy − 1〉 −→ SpecC[x]

(which can be viewed as the projection of the “graph” of x 7→ 1
x on the x-axis).

The different fibers are finite (in particular X〈x〉 = ∅) but f is not finite, since
C[x, y]/〈xy − 1〉 is not a finitely generated C[x]-module. For the last assertion,
we prove that we have C[x, y]/〈xy − 1〉 ∼= C

[
x, 1

x

]
. Let ϕ : C[x, y] −→ C

[
x, 1

x

]
the ring homomorphism which sends a polynomial f(x, y) to f

(
x, 1

x

)
. It is clear

that ϕ is a surjective ring homomorphism. Furthermore, we have 〈xy − 1〉 ⊂
kerϕ. For the other inclusion, we consider a polynomial f(x, y) such that
f
(
x, 1

x ) = 0. This means that we can write f(x, y) = g(x, y)(xy − 1) with
g(x, y) ∈ k(x)[y]. We write g(x, y) = g̃(x,y)

h(x) with g̃(x, y) primitive and h(x) in
C[x]. Hence, we have h(x) · f(x, y) = g̃(x, y) · (xy− 1). Now, h must divide the
contents of (xy − 1) but since xy − 1 is primitive, we have h ∈ C. Finally, this
implies that f ∈ 〈xy − 1〉 and thus C[x, y]/〈xy − 1〉 ∼= C

[
x, 1

x

]
, which is not a

finitely generated C[x]-module.

1.3 Dimension

1.3.1 Krull dimension

Definition 1.28 (Height of a prime ideal)
Let p be a prime ideal of a ring R. The height of p, which is denoted by ht p, is
the supremum of n ∈ N such that there exists a chain of prime ideals of R

p = p0 ) p1 ) . . . ) pn.

Remarks 1.29 (i) We count the number of strict inclusions in a chain and
not the number of prime ideals which appear.

(ii) If R is an integral domain, then we may have pn = 0.

Definition 1.30 (Krull dimension of a ring)
The dimension, or Krull dimension, of a ring R is the supremum of ht p taken
over all primes p. We denote by dimR the Krull dimension of R.

Remark 1.31
If p is a prime ideal of R, we have dimRp = ht p.

Examples 1.32 (i) The dimension of a field is 0. Conversely, if R is a domain
which has dimension 0, then R is a field.

(ii) If K is a field, then the fact that K[x] is a PID implies that dimK[x] = 1.
More generally, if R is a PID but not a field, then dimR = 1.

(iii) If R is an artinian ring, then dimR = 0 (see Proposition A.1).
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(iv) Let K be a field. Since K[x1, . . . , xn]/〈x1, . . . , xk〉
∼= K[xk+1, . . . , xn], we

have the following sequence of prime ideals

0 ( 〈x1〉 ( 〈x1, x2〉 ( . . . ( 〈x1, . . . , xn〉.

Therefore, dimK[x1, . . . , xn] ≥ n (see next theorem for a better result).

Theorem 1.33
Let R be an integral domain which is a finitely generated algebra over K. Then,
dimR is equal to the transcendental degree of R over K.

Proof. See [MR89, Theorem 5.6].

Corollary 1.34
Let k be a field. Then, we have dim k[x1, . . . , xn] = n.

1.3.2 Dimension of a topological space

Definition 1.35 (Dimension of a topological space)
Let X be a topological space. The dimension of X, denoted by dimX, is the
supremum of n ∈ N0 such that there exists a chain

Z0 ( Z1 ( Z2 ( . . . ( Zn

of closed irreducible subsets of X.

Remarks 1.36 (i) Z0 6= ∅ since the empty set is not considered to be irre-
ducible.

(ii) If X itself is irreducible, then we may have Zn = X.

Example 1.37
If X = SpecK[x, y], we have the following chain of irreducible closed subsets:
X, the “vertical line” and the point corresponding to 〈x, y〉. These closed and
irreducible subsets correspond to the prime ideals 0, 〈x〉 and 〈x, y〉.

Definition 1.38 (Codimension of a closed irreducible subset)
Let X be a scheme and Z be a closed irreducible subset of X. We define the
codimension of Z in X, written codim(Z;X), as the supremum n ∈ N0 such
that there exists a chain

Z = Z0 ( Z1 ( . . . ( Zn ⊂ X

of closed irreducible subsets.

Remarks 1.39 (i) Again, we count the number of strict inclusions instead of
the number of irreducible closed subsets occurring in the chain.

(ii) Let X = Y tZ. Then, it is easy to see that dimX = max{dimY, dimZ}.

Proposition 1.40
Let X be a topological space. Then:

(i) If Y is a subset of X endowed with the induced topology, then dimY ≤
dimX.

(ii) If {Ui}i is an open covering of X, then dimX = supi dimUi.

Proof. (i) If Y0 ⊂ Y1 ⊂ . . . ⊂ Yn is a strictly increasing sequence of closed
irreducible subsets of Y , then Y0 ⊂ Y1 ⊂ . . . ⊂ Yn is a strictly increasing
sequence of closed irreducible subsets of X.
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(ii) If Z is a closed irreducible subset of X, then U ∩Z is a closed irreducible
subset of U , if U ∩ Z 6= ∅. Therefore, we have dimX ≤ dimUi for every
i. The point (i) gives the other inequality.

Definition 1.41 (Dimension of a scheme)
The dimension of a scheme is the dimension of its underlying topological space.

Since we have an “inclusion-reversing” bijection between prime ideals of a
ring R and closed irreducible subsets of SpecR, via p 7−→ V(p), we have the
following result:

Proposition 1.42
Let R be a ring. Then, dimR = dim SpecR.

Example 1.43
Let X = SpecK[x, y]/〈y − x2〉. Then, we have the following sequence of prime
ideals

0 ( 〈y − x2〉 ( 〈x− 1, y − 1〉.

Since dimA2
K = 2, then dimX = 1. In a similar way, we see that

dim SpecK[x, y, z]/〈y − x2〉 = 2.

Proposition 1.44
Let X be a scheme and Y be a closed irreducible set of generic point η. Then,
we have dimOX,y = codim(Y ;X). One equivalent formulation is that dimOX,x
is equal to codim

(
{x};X

)
for every x ∈ X.

Proof. First, we suppose that X = SpecR and we denote the point correspond-
ing to η by p0. We have:

(i) we have “inclusion-reversing” bijection between prime ideals of a ring R
and closed irreducible subsets of SpecR;

(ii) V(p) = V(q)⇔ p = q if p and q are prime ideals;

(iii) V(p0) = Y ;

Using these three points, we find that dimRp0
= ht p0 = codim(Y ;X). Now,

suppose that X is an arbitrary scheme. Fix an affine neighbourhood of x and
use intersection and closure to use the affine case.

Example 1.45
Let X = A2

K and Y = Y0 = {y} for some closed point y of X. We know that the
maximal ideal of OX,y is the set of germs of functions which vanish at y. We
can take a line passing through y for Y1 and Y2 = A2

K . Then, the corresponding
ideals in OX,y are the ideals generated by germs of functions which vanish on
the line and the ideal 0 which corresponds to the zero polynomial.
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2 Flatness

2.1 Flatness (for modules)
In this section, we use the approach of [Bou89].

Definition 2.1 (N -flat module)
Let M and N be two R-modules. We say that the module M is N -flat if,
for every injective morphism of R-modules f : N ′ −→ N , the corresponding
morphism id⊗f : M ⊗N ′ −→M ⊗N is injective.

Proposition 2.2
Let M and N be two R-modules. Suppose that for every finitely generated R-
submodule Ñ of N the inclusion morphism M ⊗ Ñ −→ M ⊗ N is injective.
Then, M is a N -flat module.

Proof. Let f : N ′ −→ N be an injective morphism of R-modules. We can
suppose that N ′ is a submodule of N and that f is just the inclusion. Now
suppose that x =

∑n
i=1mi⊗ni ∈M⊗N ′ is such that

∑
imi⊗ni = 0 inM⊗N .

We consider Ñ = 〈ni : 1 ≤ i ≤ n〉R. By hypothesis, the composition of the two
following morphisms is injective

M ⊗ Ñ // M ⊗N ′ // M ⊗N,

which implies that x = 0.

Proposition 2.3
Let M be a N -flat module and K ≤ N be a submodule of N . Then:

(i) M is a K-flat module;

(ii) M is a N/K-flat module.

Proof. (i) This part is easy. Indeed, let f : N ′ −→ K be a monomorphism.
Then, the composition N ′ //K //N is injective. Using the N -

flatness, we find that the composition M ⊗N ′
id⊗f //M ⊗K //M ⊗N

is injective. Therefore, id⊗f is also a monomorphism, as required.

(ii) Instead of considering any monomorphism, we suppose that N ′/K −→
N/K is the inclusion. Then, the following diagram is commutative and its
two rows are exact

0 // K //

id

��

N ′ //� _

��

N ′/K
//

� _

��

0

0 // K // N // N/K // 0.

Then, we find

M ⊗K
f //

id

��

M ⊗N ′
g //

� _

b

��

M ⊗N ′/K //

c

��

0

0 // M ⊗K
f ′ // M ⊗N

g′ // M ⊗N/K

The fact that f ′ is a monomorphism follows from point (i) and the fact
that g is surjective follows from the right exactness of the functor M ⊗−.
Since id is surjective and since b is injective (by point (i)), the snake lemma
gives ker c = 0, as required.
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Proposition 2.4
Let M and {Ni}i be R-modules such that M is a Ni-flat module for each i.
Then, M is a

⊕
Mi-flat module.

Proof. See [Bou89, Lemma 5, paragraph 2, chapter I].

Definition 2.5 (Flat module)
Let M be an R-module. We say that M is flat (over R) if M is a N -flat
module for every R-module N , that is if every injective morphism of R-modules
f : N ′ −→ N gives rise to an injective map id⊗f : M ⊗N ′ −→M ⊗N .

Proposition 2.6
If M is a free R-module, then M is flat.

Proof. First, note that we can suppose that M = R(I) =
⊕

i∈I R. Let f :

N −→ N ′ be an injective morphism of R-modules. We have N ⊗M ∼= N (I)

and N ′ ⊗M ∼= N ′
(I) and the morphism corresponding to f ⊗ idM sends any

element
∑
i ni to

∑
i f(ni). Hence, M is flat over R.

Proposition 2.7
Let {Mi}i∈I and {Ni}i∈I denote two families of R-modules. For each i ∈ I, let
fi : Mi −→ Ni be a morphism of R-modules. These morphisms induce a ho-
momorphism of R-modules f :

⊕
i∈IMi −→

⊕
i∈I Ni, via

∑
i xi 7−→

∑
i fi(xi).

Then, f is injective if and only if every fi is injective.

Proposition 2.8
Let {Mi}i be a collection of R-modules. Then,

⊕
iMi is flat if and only if each

Mi is flat.

Proof. Let f : N −→ N ′ be a morphism of R-modules. We have the following
commutative diagram ⊕

iMi ⊗N //

∼=
��

⊕
iMi ⊗N ′

∼=
��⊕

i

(
Mi ⊗N

)
//⊕

i

(
Mi ⊗N ′

)
.

The previous proposition allows us to conclude.

Since every projective module is a direct summand of a free module, we get
the following corollary.

Corollary 2.9
Let P be a projective module. Then P is flat.

Proposition 2.10
Let M be an R-module. Then, M is flat if and only if M is R-flat.

Proof. IfM is flat, then the morphism i : M⊗I −→M⊗R is injective for every
ideal I of R, by definition. Reciprocally, suppose that M is R-flat and consider
an R-module N . We must show that M is N -flat. Since N can be written as
R(J)/K, for some set J , where R(J) denotes the sum

⊕
j∈J R, Propositions 2.3

and 2.4 imply that M is N -flat. Therefore, M is flat.

Remark 2.11
Proposition 2.2 implies that it is sufficient to check that the canonical morphism
M ⊗ I −→M ⊗R is injective for every finitely generated ideal I.

Proposition 2.12
Let M be an R-module. Then:
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(i) If M is flat, then Mp is a flat R-module for every p ∈ SpecR.

(ii) Rp is a flat R-module. More generally, if S is a multiplicative subset of
R, then S−1R is a flat R-module.

(iii) If R is a PID, then M is flat if and only if M is torsion-free.

(iv) Let R −→ S be a homomorphism of rings. If M is flat over R, then
M ⊗R S is flat over S.

(v) If R is flat over a ring S and if M is flat over R, then M is flat over S.

(vi) If 0 //M ′ //M //M ′′ //0 is an exact sequence of R-modules
and if both M ′ and M ′′ are flat, then M is also flat (this is the reciprocal
to Proposition 2.3).

Proof. (i) Let p ∈ SpecR and f : N −→ N ′ be an R-linear map. Then, we
have

Mp ⊗N //

∼= ��

Mp ⊗N ′
∼=��

M ⊗ (Rp ⊗N) // M ⊗ (Rp ⊗N ′).

SinceM is flat, the morphism M⊗(Rp⊗N) −→M⊗(Rp⊗N ′) is injective
and so is Mp ⊗N −→Mp ⊗N ′, as required.

(ii) Let M be an R-module and N be a submodule of N . Now, since we
have N ⊗R S−1R ∼= S−1N and M ⊗R S−1R = S−1M and since S−1N
is a submodule of S−1M , the morphism N ⊗R S−1R −→ M ⊗R S−1R is
injective, as required.

(iii) We know thatM is flat if and only if the morphismM⊗I −→M⊗R ∼= M
is injective. Since R is a PID, M is flat if and only if M is torsion free.

(iv) & (v) Follows directly from the associativity of the tensor product.

(vi) We consider an injective morphism f : N −→ N ′ and the following com-
mutative diagram

0 // M ′ ⊗N //
� _

��

M ⊗N //

��

M ′′ ⊗N //
� _

��

0

0 // M ′ ⊗N ′ // M ⊗N ′ // M ′′ ⊗N ′ // 0.

Then, the four lemma (special case of the five lemma) implies that the
morphism M ⊗N −→M ⊗N ′ is injective, as required.

Proposition 2.13 (Flatness and localization)
Let M be an R-module. Then, the followings are equivalent

(i) M is flat over R.

(ii) Mp is flat over Rp for every p ∈ SpecR.

(iii) Mm is flat over Rm for every m ∈ MaxSpecR.

Proof. The associativity of the tensor product implies (i) ⇒ (ii). It is clear
that (ii) implies (iii). Now, suppose that f : N −→ N ′ is an injective R-linear
map and let K = ker(id⊗M) : M ⊗ N −→ M ⊗ N ′. By hypothesis, we have
Km = 0 for every maximal ideal m of R. Therefore, Lemma A.3 implies that
K = 0 and thus M is flat over R.

Proposition 2.14
Let ϕ : A −→ B a morphism of rings. Then, the followings are equivalent:

(i) B is flat over A;
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(ii) for each Q ∈ SpecB, the module BQ is flat over Aϕ−1(Q);
(iii) for each Q ∈ MaxSpecB, the module BQ is flat over Aϕ−1(Q).

Proof. Again, it is clear that (i)⇒ (ii)⇒ (iii). To show that (iii) implies (i),
we consider some injective morphism of B-module ψ : N −→ N ′. Then, we
show that ker

(
ψ⊗ id : N ⊗AB −→ N ′⊗AB

)
= 0 as in the previous proof.

Proposition 2.15
Let R be a local ring of maximal ideal m and M be a finitely generated module
over R. Then, the followings are equivalent:

(i) M is free;
(ii) M is projective;
(iii) M is flat.

Proof. We know already that the implications (i) ⇒ (ii) ⇒ (iii) hold. Hence,
it remains to show that if M is flat, then M is free. We know that M/mM is
a finite dimensional vector space over R/m. We choose a basis m1, . . . ,mn of it
and elements m1, . . . ,mn such that the image of mi in the quotient M/mM is
mi. Now, consider the following R-homomorphism

ϕ : R(n) −→M, ei 7−→ mi,

where ei denotes the i-th vector of the canonical basis ofR(n). Then, Nakayama’s
lemma implies that the map ϕ is surjective (see Proposition A.5). LetK denotes
its kernel and consider the following exact sequence

0 // K // R(n) // M // 0.

By hypothesis, the following sequence is also exact:

0 // K ⊗R/m // R(n) ⊗R/m // M ⊗R/m // 0.

Since the last two terms are isomorphic, we have 0 ∼= K ⊗ R/m
∼= K/mK.

Since K is also finitely generated, using again Nakayama’s lemma gives K = 0.
Hence, ϕ is an isomorphism and thus M is free.

2.2 Flatness (for schemes)
We know that a morphism f : X −→ Y of schemes gives rise to a family of
schemes parametrized by Y : for each y ∈ Y , we have the fiber Xy = X ×Y
Specκ(y). If f is a flat morphism, then we get, in some sense, a family of
schemes which varies continuously.

Definition 2.16 (Flat morphism of schemes)
Let f : X −→ Y be a morphism of schemes and let F be an OX-module. We
say that F is flat over Y at a point x ∈ X if Fx is a flat OY,y-module via the
map f ]x : OY,f(x) −→ OX,x.
We say that F is flat over Y if F is flat over Y at every x ∈ X. We say that
X if flat over Y , or that f is flat, if OX is flat over Y .

Definition 2.17 (Faithfully flat morphism of schemes)
We say that a morphism of schemes f : X −→ Y is faithfully flat if it is flat
and surjective.

We have, indeed, the following result:

Proposition 2.18
Let ϕ : R −→ S be a homomorphism of rings and f : SpecS −→ SpecR be the
corresponding morphism of schemes. Then, ϕ is flat if and only if f is flat.
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Remark 2.19
Let f : X −→ Y be a morphism of schemes. The Proposition 2.13 implies that
f is flat if and only if f is flat at x for every closed point x ∈ X.

Proposition 2.20
Let f : X −→ Y be a morphism of schemes.

(i) If f is an open immersion, then f is flat.

(ii) Let g : Y −→ Z be a flat morphism of schemes and let F be an OX-module
which is flat over Y . Then, F is flat over Z.

(iii) Flatness is stable under base change.

(iv) Let A,B be two rings and let ϕ : A −→ B be a homomorphism. Denote by
f : X = SpecB −→ Y = SpecA the corresponding morphism of schemes.
Let M be a B-module. Then, M̃ is flat over Y if and only if M is flat
over A.

Proof. (i) Indeed, f ]x is an isomorphism for every x.

(ii) See (v) of Proposition 2.12.

(iii) We can reduce to the affine case and use (iv) of Proposition 2.12.

(iv) We have

M̃ flat over Y ⇔
(
M̃
)
q
flat over Bq, ∀q ∈ SpecB

⇔Mq flat over Bq, ∀q ∈ SpecB

⇔M flat over A.

Remark: for the last equivalence, one can proceed as in Proposition 2.14.

Examples 2.21 (i) For n > m, projections from An onto Am are flat.

(ii) The morphism of schemes SpecK −→ SpecK[x]/〈x2〉 is not flat. To see
this, we have to show that the morphism of rings ϕ : K[x]/〈x2〉 −→ K,
which sends f to f(0), is not flat. Since x · 1 = 0, the point (iii) of
Proposition 2.12 implies that ϕ is not flat.

(iii) The morphism SpecK[x, y]/〈xy〉 −→ SpecK[x] induced by the obvious
morphism is not flat since K[x, y]/〈xy〉 is not torsion-free over SpecK[x].
Note that this map corresponds to the projection of the “cross” xy = 0 to
the affine line. Moreover, the fiber over 0 is A1

K , which is of dimension 1,
while the fiber over another points contains just one point (dimension 0).
The next proposition show that under some hypothesis, the dimension of
the fibers must be constant.

Notation 2.22
Let X be a scheme and x ∈ X. We denote the Krull dimension of OX,x by
dimxX.

Proposition 2.23
Let f : X −→ Y be a flat morphism of schemes of finite type over a field k. For
any point x ∈ X, let y = f(x). Then, we have

dimx(Xy) = dimxX − dimy Y.

Proof. See [Har77, Proposition III.9.5].
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3 Grothendieck topology

3.1 Prerequisites of category theory

The goal of this section is to recall (or present) a few notions of category the-
ory. We try to present the relate the introduced categorical concepts with the
algebraic geometry.

If M is a smooth manifold, then we can recover the underlying set of M by
considering the set Hom({?},M), in the category of smooth manifolds. In a
similar way, as we will see below, the underlying set of a group G is isomorphic
to the set HomGrp(Z, G). If we want to recover the underlying set of a scheme,
over a fixed scheme is not sufficient. For example, ifX denotes SpecC[x, y], then
the set Hom(SpecC,SpecC[x, y]) is in bijection with the set of rings homomor-
phisms ϕ : C[x, y] −→ C. Such an homomorphism is determined by the images
of x and y. Hence, we have the isomorphism Hom(SpecC,SpecC[x, y]) ∼= C2

(and we do not “catch” the points corresponding to the zero ideal or to irre-
ducible curves induced by irreducible polynomials f). However, if we consider
for a scheme X the sets Hom(Y,X), where Y is a scheme, then we will be able
to recover all these informations. The association Y 7−→ Hom(Y,X) is a general
construction which is presented in the next notation.

Notation 3.1
Let C be a category and A ∈ C an object. We denote by Hom(A,−) the
covariant functor which sends any B ∈ C to Hom(A,B) and any f : B −→ B′

to

Hom(A, f) : Hom(A,B) −→ Hom(A,B′)

g 7−→ f ◦ g.

One can define the contravariant functor Hom(−, A) in a similar way. Some-
times, we will denote Hom(A,−) by hA and Hom(−, A) by hA.

Definition 3.2 (Functor of points)
If X is a scheme, the functor hX is called the functor of points of X.

Definition 3.3 (Y -valued points of a scheme)
If X is a scheme, the elements of the set hX(Y ) = Hom(Y,X) are the Y -valued
points of X. If Y = SpecR, we prefer to call the set hX(SpecR) the R-valued
points of X.

Example 3.4
LetX = SpecZ[x1, . . . , xn]/〈f1, . . . , fm〉 andR be any ring. The set Hom(SpecR,X)

is in bijection with morphisms of rings from Z[x1, . . . , xn]/〈f1, . . . , fm〉 to R,
which are specified by tuples (r1, . . . , rn) ∈ Rn such that fi(r1, . . . , rn) = 0 for
every 1 ≤ i ≤ m. Therefore, for a ring R, the elements of{

(r1, . . . , rn) ∈ Rn : fi(r1, . . . , rn) = 0,∀1 ≤ i ≤ m
}

are the R-valued points of SpecZ[x1, . . . , xn]/〈f1, . . . , fm〉.

Definition 3.5 (Representable functor)
Let C be a locally small category (i.e. a category in which the hom-sets Hom(A,B)
are sets) and F a functor from C to Set (the category of sets). We say that
F is representable if there exists an object A of C and a natural isomorphism
α : Hom(A,−) −→ F . If F is a contravariant functor, we say that F is repre-
sentable if there exists a natural isomorphism α : Hom(−, A) −→ F .
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Examples 3.6 (i) Let F : Grp −→ Set be the forgetful functor, where Grp
denotes the category of groups. Then, we have F ∼= HomGrp(Z,−), via
the natural transformation

G −→ HomGrp(Z, G)

g 7−→ φg : n 7−→ gn, ∀g ∈ G,n ∈ Z,

for every group G.

(ii) Let F : RMod −→ Set be the forgetful functor, where RMod denotes the
category of R-modules. Then, we have a natural isomorphism of functors
F ∼= Hom

RMod(R,−), via the natural transformation

M −→ Hom
RMod(R,M)

m 7−→ φm : r 7−→ r ·m, ∀m ∈M, r ∈ R,

for every R-module M .

(iii) Let R be a ring and let M,N be two R-modules. We consider the functor
F : RMod −→ Set, from the category of R-modules to the category
of sets, which sends an R-module L to the set HomR

(
N,HomR(M,L)

)
.

Because of the tensor-hom adjunction, we have a natural isomorphism

HomR

(
N,HomR(M,L)

) ∼= HomR

(
N ⊗RM,L

)
.

Hence, N ⊗RM represents the functor F .

Lemma 3.7 (Yoneda’s lemma)
Let C be a locally small category and F : C −→ Set be a functor. Then, for ev-
ery A ∈ C we have Nat

(
HomC (A,−), F

) ∼= F (A), where Nat
(

HomC (A,−), F
)

denotes the set of natural transformations from Hom(A,−) to F .

Proof. We set

Φ : Nat
(

HomC (A,−), F
)
−→ F (A)

α 7−→ αA(idA).

Moreover, we define

Ψ : F (A) −→ Nat
(

HomC (A,−), F
)

a 7−→ Ψ(a),

where the B-component of Ψ(a) is

Ψ(a)B : HomC (A,B) −→ (B)

f 7−→ F
(
f
)
(a).

A direct computation shows that this map is well defined, that is: the Ψ(a)B
are the components of a natural transformation Ψ(a). We get easily that these
maps are inverse of each other, as required.

Remarks 3.8 (i) In particular, if B is an object of C and if F = HomC (B,−),
then we have

Nat
(

HomC (A,−),HomC (B,−)
)

= Nat
(
hA, hb

) ∼= HomC (B,A).

(ii) One can prove in a similar way that Nat
(

Hom(−, A), F
) ∼= F (A) for every

contravariant functor F : C −→ Set.
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Notation 3.9 (Category of functors)
Let C be a category and A be any category. We denote by A C the category
of functors from C to A .

We are interested in Yoneda’s lemma because of the following example.

Example 3.10 (The Yoneda embedding)
Let C denote some locally small category. In this case, we can consider the
functor category SetC op

which objects are contravariant functors from C to
Set and morphisms are natural transformations between them. Then, we can
define a functor G : C −→ SetC op

which associates to every object A of C
the functor Hom(A,−) and to every morphism f : A −→ A′ the usual natu-
ral transformation G (f) : Hom(−, A) −→ Hom(−, A′). The Yoneda’s lemma
implies that G is fully faithful, that is G is an embedding of C into SetC op

.
Moreover, the contravariant representable functors from C to Set are the ones
who lie in the image of G.

Example 3.11 (Functor of points)
Let Sch be the categories of schemes. The Yoneda’s lemma implies that
Hom(−, X) : Sch −→ SetSchop

, the functor of points of a scheme X, is fully
faithful.

3.2 Grothendieck topology
In the definition of a sheaf (of abelian groups) we start by making a category
TX from a topological space X: the objects of TX are the open sets of X and
the morphisms are the inclusions between open sets. Since an open subset V of
an open set U is equivalent to an inclusion morphism V −→ U , an open covering⋃
i∈I Ui of a set U can be given by a collection of morphisms

{
Ui //U

}
i
.

We know the three following properties of open coverings:

(i) If U is an open set, then
{
U //U

}
is a covering of U .

(ii) If V ⊂ U are open sets and
{
Ui //U

}
i
is a covering for U , then the

collection
{
Ui ∩ V //V

}
i
is an open covering of U . We remark that

the intersection Ui ∩ V can be identified with the pullback (also called
fibred product) Ui ×U V .

(iii) If
{
Ui //U

}
i
and

{
Vij //Ui

}
j
are coverings, then

{
Vij //U

}
i,j

is a covering.

The previous observations motivate the following definition:

Definition 3.12 (Grothendieck topology, site)
Let T be a category. A Grothendieck topology, or a site, on T is a collection

Cov(T ) of sets
{
Ui

ϕi //U
}
i∈I (here, we allow I = ∅) of morphisms of T

called coverings. This collection must satisfy the following properties:

(i) If ϕ : V −→ U is an isomorphism, then {ϕ} ∈ Cov(T ).

(ii) If
{
Ui //U

}
i
∈ Cov(T ) and ϕ : V −→ U is a morphism, then the

fibred product Ui ×U V exists for every i and
{
Ui ×U V //V

}
is a

covering.

(iii) If
{
Ui

ϕi //U
}
i
∈ Cov(T ) and if

{
Vij

ψij //Ui
}
j
∈ Cov(T ) for every i,

then
{
Vij

ϕi◦ψij //U
}
i,j

is also a covering.

A site is a pair
(
T ,Cov(T )

)
.

Remarks 3.13 (i) We will often abuse the notations and denote a site by T
instead of

(
T ,Cov(T )

)
.
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(ii) One can easily see that if X is a topological space and if TX denotes
its category, then the collection of open coverings (in the usual meaning)
forms a site on TX .

Definition 3.14 (Morphism of topologies, morphism of sites)
Let T and T ′ be two topologies. A morphism of topologies f : T −→ T ′ is a
functor such that:

(i) For every covering
{
Ui

ϕi //U
}
i
of T , the collection

{
f(Ui)

f(ϕi) //f(U)
}
i

is a covering of T ′.

(ii) For every covering
{
Ui

ϕi //U
}
i
of T and every morphism V //U in

T , the morphism

f(Ui ×U V ) −→ f(Ui)×f(U) f(V )

is an isomorphism for every i.

Remark 3.15
It is easy to see that the identity functor from a site to itself is a morphism of
topologies. Moreover, a composition of two morphisms of sites is again a mor-
phism of sites. Therefore, one can consider the category of sites and morphisms
between them.

Example 3.16
Let X and Y denote two topological spaces and f̃ : X −→ Y be a continuous
map. Then, we obtain a map of sites f : TY −→ TX by setting f(V ) = f̃−1(V )
for every open set V of Y . Furthermore, if i : U −→ V is the inclusion between
two open sets of Y , then we let f(i) be the inclusion from f−1(U) to f−1(V ).

Example 3.17
Let G be a topological group and let C be the category of continuous left G-sets.

If {Ui}i∈I and U are objects of C , we say that
{
Ui

ϕi //U
}
is a covering of U

if:

(i) each ϕi is continuous morphism of G-sets;

(ii) we have
⋃
i∈I imϕi = U .

The fibred product of two continuous left G-sets X
ϕ //Z Y

ψoo is taken in
the category of sets: the underlying set of X ×Z Y is {(x, y) ∈ X × Y : ϕ(x) =
ψ(y)} and X ×Z Y is endowed with the structure of a continuous G-set via

G×
(
X ×Z Y

)
−→

(
X ×Z Y

)(
g, (x, y)

)
7−→ (g · x, g · y),

which is well-defined since

ϕ(g · x) = g · ϕ(x) = g · ψ(y) = ψ(g · y),

and thus (g ·x, g · y) ∈ X ×Z Y if (x, y) ∈ X ×Z Y . It is easy to see that C with
these coverings is a site. We denote this site by TG.

Definition 3.18 (Presheaf)
Let T be a site and C an abelian category. A presheaf on T with values in C
is a contravariant functor from T to C .

Remark 3.19
Let T be a site, C be an abelian category and let F be a presheaf on T . Let U

be an object of T and
{
Ui

ϕi //U
}
i∈I be a covering of U . For every i, j ∈ I, the
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canonical projections Ui ×U Uj −→ Ui and Ui ×U Uj −→ Uj induce morphisms
ηij : F (Ui) −→ F (Ui×U Uj) and ψij : F (Uj) −→ F (Ui×U Uj) which give rise to
morphisms ηi : F (Ui) −→

∏
j F (Ui×U Uj) and ψi : F (Ui) −→

∏
j F (Ui×U Uj).

Taking the product over I gives rise to the following two morphisms

∏
i F (Ui)

η //
ψ
//
∏
i,j F

(
Ui ×U Uj

)
.

Definition 3.20 (Sheaf)
A sheaf with values in C is a presheaf F with values in C such that for ev-

ery covering
{
Ui

ϕi //U
}
i
the following diagram (see previous remark for the

definition of η and ψ) is an equalizer

F (U) // ∏
i F (Ui)

η //
ψ
//
∏
i,j F

(
Ui ×U Uj

)
.

Remarks 3.21 (i) If T is a topological space, T is its category and C = Ab,
the previous condition is equivalent to the local condition and the gluing
condition of sheaves of abelian groups.

(ii) An abelian sheaf (or abelian presheaf) denotes a presheaf with values in
Ab (or a sheaf with values in Ab).

(iii) Since equalizers and products in the category Set, we can consider presheaves
and sheaves with values in Set.

Definition 3.22 (Morphism of presheaves, morphism of sheaves)
A morphism between two (pre)sheaves is a natural transformation between them.

Proposition 3.23 (Kernel of a morphism of presheaves)
Let F,G be two presheaves on a site T and α : F −→ G be a morphism between
them. Then, the kernel of α exists.

Proof. For each object U in T we letK(U) = kerαU (recall that the component
αU : F (U) −→ G(U) is a morphism in an abelian category, so we may consider
its kernel). Let ϕ : V −→ U be a morphism in T and consider the commutative
diagram:

K(U)
iU //

��

F (U)

	

0 //
αU

//

F (ϕ)

��

G(U)

G(ϕ)

��
K(V )

iV // F (V )
0 //
αV

// G(V )

We find that αV ◦ F (ϕ) ◦ iU factors through 0. Hence, the universal property
of the equalizer gives rise to a map K(ϕ) from K(U) to K(V ). Then, one can
check that K is indeed a functor.
Now, if H is another presheaf and if β : H −→ F is a morphism such that
α◦β = 0, then all the components αU ◦βU are zero and the universal properties
of the equalizers induce the components of a unique morphism γ : H −→ K, as
required.

Remark 3.24
If T is a small category, one can show that the presheaves on T form an abelian
category.

Definition 3.25 (Sheaf associated to a presheaf, sheafification)
Let T be a site and let F be a presheaf on T with values in some abelian category
C . Suppose there exists a sheaf F+ on T with value in C and a morphism
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of presheaves α : F −→ F+ which satisfy the following universal property:
for every sheaf G on T with values in C and every morphism of presheaves
β : F −→ G, there exists a unique morphism of sheaves γ : F+ −→ G such that
the following diagram commute:

F

α
��

β // G

F+

γ

>>

In this case, we say that F+ is the sheaf associated to F (or the sheafification
of F ).

Remark 3.26
If the sheafification of a presheaf F exists, then it is unique up to isomorphism.

Theorem 3.27 (Sheaf associated to a presheaf)
Let C be a site and let F be a presheaf with values in Ab or Set. Then, the
sheafification of F exists.

Proof. See [DG70, Theorem 4.3.14] and [Tam94, Theorem I.3.1.1].

Remark 3.28
For sheaves on topological spaces, the construction is detailed in [Har77, II.1.2].

3.3 Grothendieck topologies and schemes

To define the coverings of a scheme, we restrict ourselves to classes of morphisms
E which satisfy the following conditions:

(i) all isomorphisms are in E;

(ii) E is closed under composition;

(iii) E is closed under base change.

Throughout this section, E denotes a class of morphism which satisfies the
three conditions.

Example 3.29
The following classes of morphisms are stable under composition, base change
and contain all isomorphisms:

• open immersions, E = zar;

• flat morphisms (see Proposition 2.20);

• étale morphisms (see Proposition 4.39), E = ét;

• morphisms (locally) of finite type (see Proposition 1.25).

Definition 3.30 (E-morphism)
A morphism which is in the class E is called an E-morphism.

Definition 3.31 (Slice category)
Let C be a category and C ∈ C an object of C . The slice category of C over C
is the category which consists of:

(i) morphisms B
fB //C in C as objects;
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(ii) compatible morphisms as morphisms: if A
fA //C and B

fB //C are two
morphisms in C , a morphism between them is a morphism f : A −→ B
such that the following diagram commute:

A
f //

fA ��

B

fB��
C

We denote this slice category by C /C.

Let X be a scheme and C be a full subcategory of Sch/X (this means that if
Y //X Y ′oo are two objects of C /X and if f : Y −→ Y ′ is a compatible
morphism in Sch/X, then f is a morphism in C /X) which satisfies:

(i) C /X is closed under fibred products:

(ii) if Y −→ X is an object of C /X and V −→ Y is a morphism of E, then
the composition V −→ X is in C /X.

Definition 3.32 (E-covering)

Let Y ∈ C /X. A family of E-morphisms
{
Vi

ϕi //Y
}
is called an E-covering

of Y if
⋃
i ϕi(Vi) = Y .

Definition 3.33 (E-topology)
The class of all E-coverings of all objects Y of C /X is called the E-topology
on C /X.

Proposition 3.34
The category C /X together with its E-topology is a site.

Notation 3.35
We denote by (C /X)E , or XE , the category C /X with its E-topology.

Definition 3.36 (Zariski site)
The (small) Zariski site, denoted Xzar, is (Schoi/X)zar.

Remark 3.37
If we consider the Zariski site Xzar and if we identify each open immersion
U −→ X with its image, we get the usual Zariski topology.

Example 3.38 (Constant presheaf)
Let A be an abelian group. To every object U −→ X with U 6= ∅, we let
F (U) = A. We also let F (∅) = 0. If ϕ : V −→ U , with V 6= ∅, we set
F (ϕ) = idA. It is clear that F is a presheaf on Xét which is called the constant
presheaf. Note that this is not necessarily a sheaf. Consider for example the
case where X is a non-connected topological space, say X = U ∪ V for two
non-empty open sets U and V of X. Elements in F (U) and F (V ) are mapped
to zero in F (U ∩V ) = F (∅) = 0. Hence, if A is not trivial two distinct elements
a, b ∈ A won’t satisfy the gluing axiom. One can show that if A is endowed
with the discrete topology, then the sheafification F+ of F (see Theorem 3.27)
satisfy

F+(U) =
{
f : U −→ A : f continuous

}
,

for each open set U of X. In particular, if some open set U is connected, then
F+(U) = A.
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3.4 Pullback
Let f : X −→ Y be a morphism of schemes. The morphism f induces a functor
from the category of étale Y -schemes to the category of étale X-schemes: an Y -
scheme Y ′ is sent to X ×Y Y ′. Now, suppose that g : Y ′ −→ Y ′′ is a morphism
of Y -schemes. Then, we have the following commutative diagram:

X ×Y Y ′ //

p′X

((

fY ′

''

Y ′

g
{{

yy

X ×Y Y ′′ //

pX

��

Y ′′

��
X

f
// Y

Since the structural morphisms of Y ′ and Y ′′ are étale, then so are pX and
p′X . Since p′X = pX ◦ fY ′ , fY ′ is étale (see Proposition 4.42). Hence, we get a
covariant functor from the category of étale Y -schemes to the category of étale
X-schemes.

Now, one can check that f induces a morphism of topologies (see Definition
3.14).
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4 Étale topology

4.1 (Co)tangent space

LetM be a real smooth manifold of dimension n. Let p ∈M and let TpM denote
the tangent space of M at p. Let Op be the ring of germs of smooth functions
around p and let mp be its maximal ideal, which consists of class of functions
vanishing at p. A derivative v ∈ TpM gives rise to a map mp −→ R: a smooth
function f is mapped to its derivative v[f ]. Since v[f ·g] = v[f ]·g(p)+f(p)·v[g] =

0, this map gives rise to an R-linear form Φ(v) ∈ Hom
(
mp/m2

p
,R
)
. Hence,

we have an R-linear map Φ : TpM −→ Hom
(
mp/m2

p
,R
)
. This map is clearly

injective. For the surjectivity, we fix a basis
{
∂x1 , . . . , ∂xn

}
of TpM and the dual

basis
{
dx1, . . . , dxn

}
. Now, if α is an element of Hom

(
mp/m2

p
,R
)
, then we let

vi = α(dxi) and v =
∑n
i=1 vi∂xi . This vector v satisfies Φ(v) = α. Therefore,

we have an isomorphism of R-vector spaces TpM ∼= Hom
(
mp/m2

p
,R
)
.

This motivates the following definition:

Definition 4.1 (Zariski tangent space, Zariski cotangent space)
Let X be a scheme and x ∈ X. The Zariski cotangent space at x is the κ(x)-
vector space mx/m2

x
. The Zariski tangent space is the dual of the cotangent

space.

Remark 4.2
Let f : X −→ Y be a morphism of schemes and let x ∈ X and y = f(x). The
morphism f ]x restricts and corestricts to a morphism my −→ mx, which gives
rise to a morphism my/m2

y
−→ mx/m2

x
. Hence, a morphism of schemes induces

a map on the cotangent spaces.

4.2 Differentials

4.2.1 Module of relative differential forms

Definition 4.3
Let M be a B-module where B is an A-algebra. We say that d : B −→M is an
A-derivation of B into M if d satisfies:

(i) d is additive;

(ii) d(a) = 0, for all a ∈ A;
(iii) d(bb′) = b′d(b) + b(db′) (the Leibniz’s rule).

Remark that such a derivation is A-linear.

Definition 4.4 (Module of relative differential forms)
Let B be an A-algebra. A pair

(
d,ΩB/A

)
, where d : B −→ ΩB/A is an A-

derivation, is called the module of relative differential forms of B over A if it
satisfies the following universal property:
for each A-derivation d′ : B −→ M , there exists a unique morphism of B-
modules f : ΩB/A −→M such that the following diagram commutes

B
d′ //

d

��

M

ΩB/A

f

<<
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Example 4.5
Let K be a field and let B be the K-algebra K[x]. Then, we have ΩK[x]/K

∼=
K[x]. Indeed, we set d(x) = 1 and then we extend the map by K-linearity
and set d(xn) = n · d(xn−1) (for the Leibniz’s rule). Now, if we have another
K-derivation d′ : K[x] −→M , then we set f(1) = d′(x) and extend the map by
K-linearity and via the Leibniz’s rule.

More generally, we have the following example.

Example 4.6
Let A be a ring and consider the A-algebra B = A[x1, . . . , xn]. Then, we have
ΩB/A ∼= B(n), the free B-module of rank n. We want to show that B(n) satisfies
the universal property. First, we define

d : B −→ Bn

b 7−→
(
∂b

∂xi

)
,

where ∂b
∂xi

denotes the formal derivative of b with respect to xi. If d′ : B −→
M is another derivation, then we must have d′(b) =

∑n
i=1

∂b
∂xi

d′(xi) (by the
Leibniz’s rule and the A-linearity of d′). Therefore, we define fi : B −→ M
by fi(b̃) = b̃ · d′(xi). The morphism f : B(n) −→ M induced by the fi is the
required morphism.

Example 4.7
Let k be a field and K be a separable algebraic extension of k. Then, we have
ΩK/k = 0. To see this equality, consider some α ∈ K and the polynomial
f ∈ k[t] such that f(α) = 0 and f ′(α) 6= 0. Then, using induction, Leibniz’s
rule and k-linearity, we get d(α) · f ′(α) = d

(
f(α)

)
= 0, which implies d(α) = 0.

Proposition 4.8
Let B be an A-algebra. Then, the module of relative differential forms ΩB/A
exists.

Proof. Let F denote the free B-module generated by the symbols
{
d(b) : b ∈ B

}
and let K be the sub-B-module of F generated by

{a : a ∈ A}∪{d(bb′)−b′ d(b)−b d(b′) : b, b′ ∈ B}∪{d(b+b′)−d(b)−d(b′) : b, b′ ∈ B}.

We define d : B −→ F/K, which maps any b ∈ B to d(b). Then, one can check
that the quotient F/K has the required properties.

Proposition 4.9 (Functoriality of Ω−/A)
Let ψ : B −→ C be a morphism of A-algebras. Then, there is a canonical
morphism of B-algebras ψ : ΩB/A −→ ΩC/A.

Proof. It is sufficient to note that d ◦ ψ : B −→ ΩC/A is an A-derivation of
B.

Corollary 4.10
We have a canonical morphism α : ΩB/A ⊗B C −→ ΩC/A.

On the other hand, we have a morphism β : ΩC/A −→ ΩC/B .

Proposition 4.11
Let B and C be two A-algebras. The sequence

ΩB/A ⊗B C
α // ΩC/A

β // ΩC/B // 0

is exact.
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Proof. See [Liu06, Proposition 6.1.8].

Proposition 4.12
Let A′ and B be two A-algebras and let B′ = B ⊗A A′. Then, we have the
isomorphism ΩB′/A ∼= ΩB/A ⊗B B′.

Proof. First, we note that ΩB/A ⊗B B′ ∼= ΩB/A ⊗A A′. We want to show
that this B′ module satisfies the universal property of the module of relative
differential forms of B′ over A′. First, we define

ϕ : B ×A′ −→ ΩB/A ⊗A A′

(b, a′) 7−→ d(b)⊗ a′,

where d : B −→ ΩB/A is the A-derivation. This A-bilinear map induces a
morphism ϕ̃ from B′ = B ⊗A A′ to ΩB/A ⊗A A′. Moreover, it is easy to
see that ϕ̃ satisfies the Leibniz rule and is A′-linear. Now, suppose we are
given an A′-derivation ψ : B′ −→ M . We have to show there exists a unique
η : ΩB/A⊗A A′ −→M such that η ◦ ϕ̃ = ψ. We define the following morphism:

ψ̃ : ΩB/A ×A′ −→M

(d(b), a′) 7−→ ψ(b⊗ a′).

One can check that it is well-defined and A-bilinear. Thus, we get a unique
morphism η such that the following diagram commutes

B′
ψ //

ϕ̃

��

M

B ×A′

τ

77

ϕ
&&

ΩB/A ⊗A A′

η

::

ΩB/A ×A′,

ψ̃

OO

τoo

as required.

4.2.2 Global definition of the module of the relative differential
forms

Recall 4.13
Let A be a ring and M be an A-module and let X = SpecA. The sheaf
associated to M on SpecA, denoted by M̃ , has the following properties:

(i) M̃ is an OX -module;

(ii) for each p ∈ SpecA, we have
(
M̃
)
p
∼= Mp;

(iii) for any f ∈ A, the Af -module M̃
(
D(f)

)
is isomorphic to Mf ;

(iv) M̃(X) ∼= M .

See [Har77, II.5] for the construction and the properties of M̃ .
Now, if F is any OX -module, we say that F is quasi-coherent if there exists an
affine covering Ui = SpecAi of X such that for each i there exists an Ai-module
Mi with F

∣∣
Ui
∼= M̃i. If each Mi is a finitely generated Ai-module, we say that

F is coherent.

Now, we would like to generalize the construction of the module of relative
forms: if f : X −→ Y is a morphism of schemes, we would like to define an
OX -module ΩX/Y such that:
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(i) if U ⊂ X and V ⊂ Y are two open affine subsets such that f(U) ⊂ V ,
then ΩX/Y

∣∣
U
∼=
(

ΩOX(U)/OY (V )

)∼
;

(ii) for each x ∈ X, then
(
ΩX/Y

)
x
∼= ΩOX,x/OY,f(x) .

To do this, there exists two construction. The former reproduces the construc-
tion of the structural sheaf on an affine scheme SpecR (we associate to each
open set a collection of functions satisfying certain properties), while the lat-
ter is more abstract. The first construction is presented in [Liu06, Proposition
6.1.17]. To introduce the second one, we present another definition of ΩB/A for
an A-algebra B.

Proposition 4.14 (An alternative definition of ΩB/A)
Let B be an A-algebra. Let ∆ : B ⊗A B −→ B, which sends any x ⊗ y to xy,
and denote by I the kernel of ∆. Then, I/I2 ∼= ΩB/A.

Proof. We want to define the morphisms ε, η, ψ and ψ (in this order) such that
the following diagram commute:

A
d //

ε

��

ΩA/B

η

uu

I

π

��

ψ
33

I/I2,

ψ

::

where d : A −→ ΩA/B and π : I −→ I/I2 are the canonical maps. Since we
want π ◦ ε to be an B-derivation, we define ε(b) = 1 ⊗ b − b ⊗ 1. Then, it is
easily seen that ε(b) ∈ ker ∆ and that πε is an A-derivation. Therefore, we get
an induced map η : ΩB/A −→ I/I2. Now, if

∑
xi⊗ yi ∈ I, we have

∑
xiyi = 0.

Thus, we can write∑
xi ⊗ yi =

∑
(xi ⊗ yi − xiyi ⊗ 1) =

∑
xi ε(yi).

Hence, we define ψ
(∑

xi ⊗ yi
)

:=
∑
xi d(yi) and one can check that ψ passes

to the quotient. Therefore, we get ψ : I/I2 −→ ΩB/A. Finally, η and ψ are
inverses of each other.

Before giving the definition, we recall a few results.

Definition 4.15 (Ideal sheaf of a closed immersion)
Let f : X −→ Y be a closed immersion. Then, we define the ideal sheaf of X,
denoted JX/Y , as the kernel of the morphism i] : OY −→ f∗OX .

Proposition 4.16
Let Y be a scheme and X be a closed subscheme of Y . Then, JX/Y is a quasi-
coherent sheaf of ideals on Y .

Proof. See [Har77, Proposition II.5.9].

Proposition 4.17
Let X and Y be schemes and let f : X −→ Y be a morphism of schemes. Then
the diagonal morphism ∆ : X −→ X ×Y X induces an isomorphism from X
onto ∆(X) which is a locally closed subscheme of Y (i.e., a closed subscheme
of an open subscheme W of Y ).

Proof. See [Har77, Corollary II.4.2].
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Definition 4.18 (Sheaf of relative differential forms)
Let f : X −→ Y be a morphism of schemes and let W be as in the previous
proposition: this means that we have the following factorization of ∆

X

g
  

∆ // X ×Y X

W
, �

::

Let JX/Y be the ideal sheaf of g on W . Then, we define the sheaf of relative
differential forms, denoted ΩX/Y , as g∗

(
JX/Y /J 2

X/Y

)
.

Remark 4.19
Let ϕ : A −→ B be a morphism of rings and f : SpecB −→ SpecA be the
corresponding morphism. Then, we have ΩSpecB/ SpecA

∼=
(
ΩB/A

)∼.
Example 4.20
We know that if ϕ : A −→ B is surjective, then ΩB/A = 0. In particular, if
ϕ : A −→ B = A/I is the canonical map, then ΩB/A. This implies that if
Y = SpecR and f : X −→ Y is a closed immersion, then ΩX/Y is trivial.

Example 4.21
If X = AnK , then we have ΩX/k = O(n)

X , the free OX -module of rank n (see
Example 4.6).

4.3 Étale morphisms
In this section, we follow [Mil80]. In particular, every scheme is assumed to be
locally noetherian1.

Definition 4.22 (Unramified morphism)
Let f : X −→ Y be a morphism locally of finite type. Let x ∈ X and y = f(x).
We say that f is unramified at x if OX,x/myOX,x is a finite separable extension
of κ(y), where myOX,x denote the ideal generated by the image of my under the
ring homomorphism f ]x : OY,y −→ OX,x. We say that f is unramified if it is
unramified at every point of X.

Remark 4.23
The condition “OX,x/myOX,x is a finite separable extension of κ(x)” is equiva-
lent to the two conditions:

(i) κ(x) is a finite and separable extension of κ(y);
(ii) myOX,x = mx.

Proposition 4.24
Let f : X −→ Y be a morphism of schemes of locally finite type. Let x ∈ X,
y = f(x) and the corresponding point x′ ∈ Xy. Then, f is unramified at x if
and only if f ′ : Xy −→ κ(y), the morphism given by the universal property of
the fibred product, is unramified at x′.

Proof. Follows from Proposition 1.15.

Definition 4.25 (Étale morphism)
Let f : X −→ Y be a morphism locally of finite type and let x ∈ X. We say
that f is étale at x if f is flat and unramified at x. We say that f is étale if it
is étale at every point of X.

1Recall that a scheme is locally noetherian if it can be covered by the spectras of noetherian ring.
Moreover, a scheme X is locally noetherian if and only if for every open affine subset SpecR ∼= U
of X, R is a noetherian ring (see Proposition [Har77, II.3.2]).
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Example 4.26
The morphism SpecF −→ SpecK corresponding to a finite field extension
K ⊂ F is unramified (and hence étale) if and only if F is separable over K.

Example 4.27
A closed immersion, which corresponds locally to a homomorphism R −→ R/I,
is unramified.

Example 4.28
Let K be a field, Q ∈ K[t] be a monic polynomial and consider the morphism
f : X = SpecK[t]/〈Q〉 −→ SpecK. Let x ∈ X, which corresponds to the
ideal 〈P 〉/〈Q〉, where P is an irreducible factor of Q, and denote by y the
corresponding point of SpecK. Then, f is unramified at x if and only if P is
separable and P k - Q if k > 1. In particular, f is unramified if and only if
Q is separable. For the first condition, we note that κ(x) ∼= K[x]/〈P 〉. Hence,
κ(x) is a finite separable extension of κ(y) if and only if P is separable. Now,
suppose that Q = P · S, with P - S. Since myOX,x = 0, we have to show that
mx = 0. But an element in mx is of the form g·P+〈Q〉

h+〈Q〉 , for some g, h ∈ K[t] with
h /∈ 〈P 〉. Since P - S, we have

g · P + 〈Q〉
h+ 〈Q〉

=
g · P · S + 〈Q〉
h · S + 〈Q〉

= 0,

and thus mx = 0. Hence, f is unramified at x if P is separable and is a simple
factor of Q. Now, suppose that Q = P k · S with P - S and k > 1. In the ring(
K[x]/〈Q〉

)
〈P 〉/〈Q〉, the element P is not zero and is not invertible. It follows

that mx 6= 0 and thus myOX,x 6= mx. Therefore, f is not unramified at x.
SinceK[t]/〈Q〉 is a freeK-module of rank equal to the degree ofQ, the morphism
f : K[t]/〈Q〉 −→ SpecK is flat. Hence, it is étale if and only if Q is separable.

Example 4.29
Let K be a field of characteristic different from 2 and consider the projection
of the parabola f : X = SpecK[x, y]/〈y2 − x〉 −→ Y = SpecK[x]. Let a be

a closed point of Y . Then, we find Xa = Spec
(
K[y]/〈y2 − a〉

)
(see Example

1.12). Now, we have three cases:

a = 0 We have Xa = Spec
(
K[y]/〈y2〉

)
and the morphism X0 −→ K is rami-

fied.

a = b2 We have Xa = Spec
(
K ×K

)
and the morphism Xb2 −→ K is unram-

ified.

a is not a square We have Xa = SpecF , where F is a separable extension of
degree two of K. Hence, Xa −→ K is unramified.

Using the previous proposition we see that f is unramified at (a, b) provided
that (a, b) 6= 0.

Example 4.30
Let f : X = SpecK[x, y]/〈x2 − y〉 −→ Y = SpecK[x] be the projection of the
parabola on the x-axis. If a is an element of K, we consider the morphism
fa : Xa −→ Specκ(a) (given by the universal property of the fibred product)
which is, up to isomorphism, fa : SpecK −→ SpecK. Hence, f is unramified
at a (see Proposition 4.24). Now, on the fiber over the generic point 〈0〉 of Y ,
we get the morphism SpecK[x] −→ SpecK[x]. Hence, f is unramified.

Example 4.31
Let d be a square-free integer and consider the number field K = Q[

√
d] and
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the ring of integers OK of K, that is

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4),

Z
[

1+
√
d

2

]
if d ≡ 1 (mod 4).

We consider the morphism f : X = SpecOK −→ SpecZ and want to determine
at which points f is unramified. Let p ∈ P and suppose d ≡ 2, 3 (mod 4). Then,
we have

Xp = Z[
√
d]⊗Z Fp ∼= Z[x]/〈x2 − d〉 ⊗Z Z/pZ ∼= Fp[x]/〈x2 − d 〉.

(i) If p | d, then we have Fp[x]/〈x2〉, which is ramified over Fp (see Example
4.28).

(ii) If p - d and d is a square mod p, then x2 − d is separable in Fp[x] and so
Fp[x]/〈x2 − d 〉 is unramified over Fp

(iii) If d is not a square mod p, then x2 − d is irreducible and it is separable if
p 6= 2.

Hence, if p | disc(K) = 4d, then f is ramified at p. If p - 4d, then it depends on
the Legendre symbol and on if p = 2 or not.

4.3.1 First properties of étale morphisms and other character-
izations

We recall the three following definitions.

Definition 4.32 (Jacobson ideal)
The Jacobson radical of a ring is the intersection of all its maximal ideals.

Definition 4.33 (Separable algebra)
Let K be a field and A a K-algebra. We say that A is separable (over K) if
the Jacobson radical of A = A ⊗K K is zero, where K is the algebraic closure
of K.

Definition 4.34 (Separably closed field)
We say that a field K is separably closed if every separable element of K belongs
to K.

Proposition 4.35
Let f : X −→ Y be a morphism of locally finite type. The followings are
equivalent:

(i) f is unramified.

(ii) For all y ∈ Y , the morphism Xy −→ κ(y) is unramified.

(iii) For every morphism SpecK −→ Y , with K separably closed, the mor-
phism X ×Y SpecK −→ SpecK is also unramified (all the geometric
fibers of f are unramified).

(iv) For every y ∈ Y , Xy has an open covering by spectra of finite separable
κ(x)-algebras.

(v) For every y ∈ Y , Xy is an amalgamated sum
∐

SpecKi, where the Ki

are finite separable extensions of κ(x).

Proof. See 4.24 for (i)⇔ (ii) and [Mil80, Proposition 3.2].

Proposition 4.36
Let f : X −→ Y be a morphism of locally of finite type. Then, the followings
are equivalent:
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(i) f is unramified;

(ii) ΩX/Y = 0;

(iii) the diagonal morphism ∆X/Y : X −→ X ×Y X is an open immersion.

Proof. (i)⇒ (ii) Let x ∈ X and y = f(x). We know that Ωκ(x)/κ(y) = 0 (see
Example 4.7). Since κ(x) = OX,x ⊗OY,y κ(y), Proposition 4.12 implies

0 = Ωκ(x)/κ(y)
∼= ΩOX,x/OY,y

∼= OX,xκ(x).

Since f is locally of finite type, then ΩOX,x/OY,y is a finitely generated
OX,x-module and Corollary A.6 implies 0 = ΩOX,x/OY,y

∼=
(
ΩX/Y

)
x
.

Hence, ΩX/Y = 0, as required.

(ii)⇒ (iii) Let W and JX/Y as in Definition 4.18. By hypothesis, we have the
equality

(
JX/Y

)
x
/
(
JX/Y

)2
x

= 0 and Corollary A.7 implies that
(
JX/Y

)
x

=

0 for every x ∈ X. Hence,
(
JX/Y

)
is zero on an open subset V of U con-

taining X. Therefore, we have (X,OX) ∼=
(
V,OX×YX

∣∣
U

)
, as required.

(iii)⇒ (i) First, suppose that f : X −→ SpecK, whereK is some algebraically
closed field. Let x ∈ X be some closed point of x. We have the inclusion
K −→ κ(x) which means that K = κ(x), since K is algebraically closed.
Hence, we get a section g : SpecK −→ X of f whose image is {x}. Now,
we have the following commutative diagram:

X
∆ // X ×Y X

{x}
g

//

g

OO

X.

(g◦f,id)

OO

Now, since ∆ is an open immersion, {x} is open in X. Furthermore, the
morphism {x} = SpecOX,x −→ SpecK satisfies the property that the
induced morphism SpecOX,x −→ Spec

(
OX,x ⊗K OX,x

)
is still an open

immersion. Since OX,x is an artinian ring with residue field K, the ring
OX,x⊗KOX,x has only one prime ideal and OX,x⊗KOX,x −→ OX,x must
be an isomorphism. Considering the dimensions over K gives OX,x = k.
Hence, mx = 0 and f is unramified at x. Finally, Proposition 4.35 gives
the required result.

Remark 4.37
In the last proof, we use for the first time the hypothesis of local finiteness.

Proposition 4.38
Let f : X −→ Y be an étale morphism and let x ∈ X and y = f(x). Then, we
have my/m2

y
⊗κ(y) κ(x) ∼= mx/m2

x
.

Proof. We compute

my/m2
y
⊗κ(y) κ(x) ∼= my ⊗OY,y OX,x/mx

∼=
(
my ⊗OY,y OX,x

)
⊗OX,x OX,x/mx

∼=
(
my ⊗OY,y OX,x

)
/
(
mx
(
my ⊗OY,y OX,x

))
Since f is flat at x, we have my ⊗OY,y OX,x ∼= myOX,x. Finally, since f is
unramified at x, the last term is isomorphic to mx/m2

x
.

Proposition 4.39
Let f : X −→ Y and g : Y −→ Z be two morphisms locally of finite type. Then:
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• If f is an open immersion, then f is étale.

• If f and g are étale, then so is g ◦ f .

• Any base change of an étale morphism is étale.

Proof. By Proposition 2.20, we only need to prove “unramified part” of the
statements. Let x ∈ X, y = f(x) and z = g(y).

(i) Obvious.

(ii) If κ(x) is separable over κ(y) and κ(y) is separable over κ(z), then κ(x) is
separable over κ(z). The second part is obvious.

(iii) Let g : Y ′ −→ Y be some morphism of schemes. By Proposition 4.35, to
show that f ′ : X ×Y Y ′ −→ Y ′ is unramified is equivalent to show that
for each separably closed field K and each morphism SpecK −→ Y ′, the
morphism X ×Y Y ′ ×Y ′ SpecK −→ SpecK is unramified. But since we
have the isomorphism X ×Y Y ′ ×Y ′ SpecK ∼= X ×Y SpecK, this is the
case by the assumptions on f .

Proposition 4.40 (Jacobian criterion)
Let A be a noetherian ring and let f1, . . . , fn ∈ A[x1, . . . , xn] be polynomials.
Then, SpecA[x1, . . . , xn]/〈f1, . . . , fn〉 is étale over SpecA if and only if the de-
terminant of the Jacobian matrix ∂fi

∂xj
is a unit in A[x1, . . . , xn]/〈f1, . . . , fn〉.

Proof. See [Mil80, Example I.3.4].

The Jacobian criterion is really useful to determine if a morphism is étale
or not.

Example 4.41
The morphism SpecQ[x, y]/〈y2 − x〉 −→ SpecK[x] is not étale since y is not a
unit in Q[x, y]/〈y2 − x〉. The morphism SpecQ[y, x]/〈x2 − y〉 −→ SpecK[x] is
étale.

4.4 Étale topology

Proposition 4.42
Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. Suppose that g ◦ f
is étale and g is unramified. Then, f is étale.

Proof. See [Mil80, Corollary I.3.6].

Corollary 4.43
For a scheme X, Schét/X is a full subcategory of Sch/X.

Definition 4.44 (Zariski site)
The (small) étale site, denoted Xét, is (Schét/X)ét. The (small) Zariski site,
denoted Xzar, is (Schoi/X)zar.

Proposition 4.45
Let X be a scheme. Then, Xét is a site.

Proof. We check the three conditions:

(i) We know that all isomorphisms are étale.
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(ii) Let
{
Ui

ϕi //U
}
i
be an étale covering and let ϕ : V −→ U be a morphism.

We know (Proposition 4.39) that the morphisms V ×U Ui −→ V is étale
for every i. To show that these morphisms form a covering, consider v ∈ V
and let u = ϕ(v). Now, pick i ∈ I such that there exists some u′ ∈ Ui
with ϕi(u′) = u. The corollary 1.17 implies that there exists v′ ∈ V ×U Ui
which is mapped to v under the morphism V ×U Ui −→ V , as required.

(iii) Comes from Proposition 4.39.

Remarks 4.46 (Presheaves and sheaves on Xét)
Let F be a presheaf on Xét.

(i) Unlike with the Zariski topology, it might exists many morphisms from
U to X. In this case, there will be many restriction maps from F (X) to
F (U).

(ii) We recall the condition for F to be a sheaf: for every covering
{
Ui

ϕi //U
}
i

the following diagram (see Remark 3.19 for the definition of η and ψ) is
an equalizer

F (U) // ∏
i F (Ui)

η //
ψ
//
∏
i,j F

(
Ui ×U Uj

)
.

Since the ϕi are not necessarily monomorphisms, we may not have the
isomorphism Ui ×U Ui ∼= Ui. Hence, the case where i = j is not trivial
(again, unlike in the Zariski case).

(iii) Let F be a sheaf. Since the empty set of morphisms form a covering of
the empty set, the condition says that we have an exact sequence

F (∅) // 0
//// 0

The universal property of the equalizer implies that F (∅) is a terminal
object in C . Hence, we have F (∅) = 0. We note that this result holds
also for sheaves over Xzar.

4.5 The case of Spec k
In this section, we state without proof a theorem explaining the relationships
between étale coverings theory and Galois theory. The details can be found
in [Tam94]. Let k be a field and ks be a separable closure. Let G be the Galois
group of the Galois extension ks/k (with its usual structure of profinite group).

Recall 4.47
Let X be a scheme and k be any field. We denote by X(k) the set of k-points
of X, which is the set of morphisms Spec k −→ X. We know that each k-point
of X corresponds uniquely to a point x ∈ X and a homomorphism of fields
κ(x) −→ k.

The group G acts on the left of X(ks) as follows:

G×X(ks) −→ X(ks)

(g, σ) 7−→ g · σ = σ ◦ Spec(g),

where Spec(g) : Spec(ks) −→ Spec(ks) is the image by the functor Spec of g.
Let H be an open subgroup of G and let k′ = kH , the fixed field of H. Then, we
can identify X(ks)

H with X(k′). Since H is a closed subgroup of G (recall that
in a compact topological group, any open subgroup is closed), k′ is a finite exten-
sion of k. The inclusion k′ −→ ks induces a morphism Spec ks −→ Spec k′ which
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induce the inclusion X(k′) ⊂ X(ks). Moreover, since X(ks) =
⋃
H X(ks)

H , as
H goes through the set of open subgroups of G, G acts continuously of X(ks).

Before giving the main result, we recall that a topological group G gives rise
to a site TG (see Example 3.17).

Theorem 4.48
The functor which send an

(
Spec k

)
-scheme X ′ to X ′(ks) is an equivalence of

topologies between the étale site
(

Spec k
)
ét of Spec k and the site TG.

Proof. See [Tam94].
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5 Fpqc topology and the descent problem
In this section, we follow the paper [Bro11]. Additional information and proofs
can be found in [G+, Exposés VIII].

5.1 Some examples for the descent problem
Before giving the general setting of the descent problem, we give two examples:
gluing morphisms and gluing schemes.

5.1.1 Gluing morphisms for the Zariski topology

Let U be a scheme and let X and Y two U -schemes. If {Ui}i is a covering of U
for the Zariski topology, we let Xi and Yi the preimages of the Ui under the ϕi,
that is Xi = X ×U Ui and Yi = Y ×U Ui. Now, suppose we are given a family
of morphisms ϕi : Xi −→ Yi which agree on the intersection Xi ∩ Xj (recall
that Xi ∩ Xj

∼= Xi ×X Xj). We know that there exists a unique morphisms
of schemes ϕ : X −→ Y such that ϕ

∣∣
Xi

= ϕi. We can rephrase this result as
follows:

Proposition 5.1
Let X be a schemes and let X and Y be two S-schemes. Consider the following
functor

F : Sch(S) −→ Ens

U 7−→ HomSch(U)

(
X ×S U, Y ×S U

)
.

Then, F is a sheaf for the Zariski topology.

5.1.2 Relative gluing schemes for the Zariski topology

Let U be a scheme and let {Ui}i be a Zariski covering of U . As usual, we denote
by Uij and Uijk the sets Ui ∩ Uj and Ui ∩ Uj ∩ Uk for every i, j, k. For each i,
we consider some Ui-scheme fi : Xi −→ Ui. The goal here is to glue the Xi to
get an U -scheme X. Suppose that we have the followings:

(i) For all i, j, we have an isomorphism ϕij : f−1
j (Uij) −→ f−1

i (Uij), where
f−1
j (Uij) denotes the pullback of the scheme Uij under fj .

(ii) For all i, j, k, we have the cocycle condition

ϕik = ϕij ◦ ϕjk

which means that the following diagram is commutative:

f−1
k (Uijk)

ϕjk //

ϕik &&

f−1
j (Uijk)

ϕijxx
f−1
i (Uijk).

Then, there exists a unique U -scheme f : X −→ U and isomorphisms ϕi :
f−1(Ui) −→ Xi which make the following diagram commutative

f−1
j (Uij)

ϕ−1
j //

ϕij %%

f−1(Uij)

ϕiyy
f−1
i (Uij).
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5.2 The fpqc site

Definition 5.2 (Quasi-compact)
A morphism of schemes f : X −→ Y is quasi-compact if there exists an open
covering of affine subsets Vi of Y such that f−1(Vi) is compact (recall that we
do not suppose any separateness or Hausdorff condition) for each i.

Definition 5.3 (Fpqc morphism)
A morphism of schemes f : X −→ Y is fpqc if it is faithfully flat (see Definition
2.17) and quasi-compact2.

Proposition 5.4
The composition of two quasi-compact morphisms is quasi-compact.

Proof. See [GD71, I.6].

Proposition 5.5
The base change of a quasi-compact morphism is quasi-compact.

Proof. See [GD71, I.6].

The last proposition, Corollary 1.18 and Proposition 2.20 now imply.

Proposition 5.6
The base change of a fpqc morphism is again fpqc.

Definition 5.7 (The fpqc site)
Let S be a scheme. The fpqc site on S is the category Sch(S) together with the

following of coverings: a collection
{
Ui

ϕi //U
}
is a covering of the S-scheme

U if the induced morphism
∐
i Ui −→ U is fpqc.

Proposition 5.8
The fpqc site is indeed a site.

Proof. (i) It is clear that isomorphisms are fpqc coverings.

(ii) Let
{
Ui //U

}
be a fpqc covering and V −→ U . Since

{
Ui //U

}
is

an fpqc covering and since the property of being fpqc is stable under base
change, the morphism

(∐
i Ui
)
×U V −→ V is also fpqc. Therefore, the

morphism
∐
i

(
Ui ×U V ) −→ V is also fpqc, as required.

(iii) Let
{
Ui

ϕi //U
}
i
∈ Cov(T ) be a covering and let

{
Vij

ψij //Ui
}
j
∈

Cov(T ) be coverings for every i. We have show that the morphism∐
i,j Vij −→ U is fpqc. But this morphism factors through∐

i,j

Vi,j −→
∐
i

Ui −→ U.

Now, if a family of morphisms Xi −→ X is quasi-compact, then so is
the morphism

∐
iXi −→ X and the same holds for the flatness and the

surjectivity. Hence, our morphism is fpqc, as required.

2The term fpqc comes from the French “fidèlement plat et quasi-compact”.
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5.3 The descent problem
Definition 5.9 (Contravariant pseudo-functor)
Let C be a category. A contravariant pseudo-functor F on C consists of the
followings:

(i) For every object U of C , a category F (U).

(ii) For every morphism f : U −→ V in C , a functor f∗ : F (V ) −→ F (U).

(iii) For every object U in C , an isomorphism (of functors) εU : (idU )∗ −→
idF(U).

(iv) For every pair of morphisms U
f //V

g //W , an isomorphism (of func-
tors) αf,g : f∗ ◦ g∗ ∼= (g ◦ f)∗ : F (W ) −→ F (U).

Moreover, F have to satisfy the following “compatibility conditions”:

(i) For every morphism f : U −→ V in C and every object η in F (V ), we
have (

αidU ,f

)
η

=
(
f∗ ◦ εV

)
η

: f∗ ◦ (idV )∗(η) −→ f∗(η)(
αf,idU

)
η

=
(
f∗ ◦ εV

)
η

: f∗ ◦ (idV )∗(η) −→ f∗(η).

(ii) For every triplet of morphisms U
f //V

g //W
h //T in C and every

object η ∈ F (T ), we have a commutative diagram:

f∗ ◦ g∗ ◦ h∗(η)

(
αf,g

)
h∗(η) //

f∗
((
αg,h

)
η

)
��

(g ◦ f)∗ ◦ h∗(η)(
αg◦f,h

)
η

��
f∗ ◦ (h ◦ g)∗(η) (

αf,h◦g

)
η

// (h ◦ g ◦ f)∗(η)

Example 5.10
Let S be a scheme and let C be the category of S-schemes. To every S-scheme
U , we associate the category Coh(U) of quasi-coherent modules over U . Now,
if f : U −→ V is a morphism of S-scheme, f∗ : Coh(V ) −→ Coh(U) is the usual
pullback: a quasi-coherent module M over V is mapped to f−1(M )⊗f−1OV OU .

Example 5.11
As before, let C denote the category of S-scheme. To any S-scheme U we
associate the category of U -schemes. Now, if f : U −→ V is any morphism of
S-scheme, a V -scheme X is sent to U ×V X. If g : X −→ X ′ is a morphism of
V -schemes, then f∗(g) : U ×V X −→ U ×V X ′ is the base change of g.

The next definition generalizes the relative gluing of schemes for the Zariski
topology.

Definition 5.12 (Descent data)
Let C be a site and F a pseudo-functor on C . Let U be an object of C and
let U =

{
Ui //U

}
a covering for U . For i, j, k, we denote by Uij the fibred

product Ui ×U Uj and by Uijk the product Ui ×U Uj ×U Uk. Now, we have the
canonical projections:

pr1 : Uij −→ Ui, pr2 : Uij −→ Uj ,

q1 : Uijk −→ Ui, q2 : Uijk −→ Uj , q3 : Uijk −→ Uk

pr12 : Uijk −→ Uij , pr23 : Uijk −→ Ujk, pr13 : Uijk −→ Uik.
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For every i, let ξi be an object of F (Ui). A descent data for the family {ξi} is
a collection of isomorphisms

ϕij : pr∗2 ξj
∼=−→ pr∗1 ξi

in the category F (Uij). Since we have

pr∗13 ◦ pr∗2
∼=
(

pr2 ◦ pr13

)∗
= q∗3 : F (Uijk) −→ F (Uk),

and similarly for other indices, we ask that we have

pr∗13

(
ϕik
)

= pr∗12

(
ϕij
)
◦ pr∗23

(
ϕjk
)

: q∗3(ξk) −→ q∗1(ξi),

up to the isomorphisms, for every triplet (i, j, k). Note that this is the gener-
alization of the cocycle condition of Section 5.1.2. We say that

(
{ξi}, {ϕij}

)
is

an object with a descent data for the covering U =
{
Ui //U

}
.

Definition 5.13 (The category of objects with descent data with respect to a
covering)
Let

(
{ξi}, {ϕij}

)
and

(
{ηi}, {ψij}

)
be two objects with descent data for a cov-

ering U =
{
Ui //U

}
. A morphism from

(
{ξi}, {ϕij}

)
to
(
{ηi}, {ψij}

)
is a

collection of morphisms αi : ξi −→ ηi in F (Ui) such that the following diagram
commute for every i, j:

pr∗2 ξj
pr∗2(αj) //

ϕij

��

pr∗2 ηj

ψij

��
pr∗1 ξi pr∗1(αi)

// pr∗1 ηi.

We denote by F (U/U) the category of objects with descent data for the covering
U .

Example 5.14 (From an object to a descent data)
Let ξ be an object of F (U). We can construct an object with a descent data

for the covering U =
{
Ui

ϕi //U
}
as follows:

• We let ξi = ϕ∗i (ξ).
• Since ϕi ◦ pr1 = ϕj ◦ pr2, we get an isomorphism ϕij : pr∗2 ξj −→ pr∗1 ξ1 via

αpr1,ϕi and αpr2,ϕj .

Now, if ϕ : ξ −→ η is a morphism in F (U), we get a morphism {αi : ξi −→ ηi}
between

(
{ξi}, {ϕij}

)
and

(
{ηi}, {ψij}

)
by letting αi = ϕ∗i (ϕ). Since each ϕ∗i is

a functor, we have a functor from F (U) to F (U/U).

Definition 5.15 (Effective descent data)
A data descent {ξi} is called effective if there exists some object ξ in F (U)
which induces (up to isomorphism) the family {ξi} (via the functor defined in
the previous example).

Theorem 5.16
Let U be a scheme and let

{
Ui //U

}
be an fpqc covering of U . The functor

Coh(U) −→ Coh(U/U) (see Example 5.10 for a definition of Coh) is an equiv-
alence of categories. In particular, every data descent of OUi-module quasi-
coherent is effective.

Proof. See [BLR90, Theorem 6.4].

Theorem 5.17
Let S be a scheme and let X be a S-scheme. Then, the functor of points
hX = HomS(−, X) is a sheaf for the fpqc topology.

Proof. See [Bro11, Theorem 2.2.5]
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6 Fppf topology and representability

6.1 The fppf site
Definition 6.1 (Fppf covering)
Let X be a scheme. An fppf covering of X is given by a family of morphisms
fi : Xi −→ X such that each fi is flat and locally of finite presentation and
such that

⋃
i im fi = X.

Proposition 6.2
The collection of fppf coverings of a scheme S satisfies the conditions of a site.

Proof. We already know that the coverings by flat morphisms satisfy these
properties. Moreover, we know that composition of morphisms of locally of
finite presentation is again locally of finite presentation and that this property
is stable under base change (see, for example, [Aut, Morphisms of schemes,
24.19]).

Definition 6.3 (The fppf site)
Let S be a scheme. The fppf site on S is the category Sch(S) together with the
fppf coverings.

6.2 Fppf topology and representability
In this section, S is a scheme and X is a S-scheme.

Definition 6.4 (Picard group of a ringed space)
Let (X,OX) be a scheme. The set of isomorphism classes of invertible OX-
modules can be endowed with a structure of abelian group whose law group is
the tensor product over OX . The details can be found in [Har77, II.6].

Definition 6.5 (Relative Picard functor)
We have a contravariant functor

PX/S : Sch(S) −→ Set

T 7−→ Pic(X ×S T ).

A morphism of S-schemes f : T −→ T ′ gives rise to a morphism of schemes
f̃ : X×S T −→ X×S T ′ and then to a map from Pic(X×S T ′) to Pic(X×S T ):
an OT -module F is sent to f̃∗(F ), where f̃∗ is the usual pullback (see Example
5.10).

Remark 6.6
In fact, the morphism f̃∗ : Pic(X×S T ′) −→ Pic(X×S T ) is a group homomor-
phism, but we forget the group structure here.

Theorem 6.7
Let F be a contravariant representable functor on Sch(S) with values in Set.
Then, F is a sheaf with respect to the fpqc topology (and thus for the fppf, étale
and Zariski topology).

Proof. See [BLR90, Proposition 8.1].

Since the relative Picard functor may failed to be a sheaf (even for the
Zariski topology) it may not be representable. However, there are some nice
situations where the sheafification of PX/S (see Theorem 3.27) is representable.

Definition 6.8
The sheafification of the relative Picard functor (see Theorem 3.27) is denoted
by PicX/S. For any S-scheme T , we call PicX/S(T ) the relative Picard group
of X ×S T over T .
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In order to state the theorem, we recall some notations and definitions.

Notation 6.9
For any ring R, we denote by PnR the scheme ProjR[x0, . . . , n].

Definition 6.10 (Projective space over a scheme)
Let X be a scheme and let n ∈ N. The projective n-space over X is the scheme
PnX := PnZ ×(SpecZ) X.

Definition 6.11 (Projective morphism)
A morphism of schemes f : X −→ Y is projective if there exists n ∈ N and a
closed immersion i such that the following diagram is commutative

X
f //

i   

Y

PnY

>>

where PnY −→ Y is the canonical morphism.

Theorem 6.12
Let X and S be two locally noetherian schemes. Let f : X −→ S be a projective
morphism of finite presentation. Moreover, suppose that f is flat and that
all geometric fibers are integral. Then, the sheaf PicX/S is representable by a
separated S-scheme which is locally of finite type over S.

Proof. See [Gro61, Theorem 3.1].
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A Some results of algebra

Proposition A.1
Let R be an artinian ring. Then:

(i) Every prime ideal is maximal.

(ii) SpecR is finite.

Proof. (i) Let P be a prime ideal of R and r be any element such that r /∈ P .
Consider the sequence

P + rR ⊃ P + r2R ⊃ . . . ⊃ P + rnR ⊃ . . . .

Since R is artinian, there exists some n ∈ N such that P + rnR = P +
rn+1R. Hence, there exists elements s ∈ R and p ∈ P such that 1−rs = p,
that is 1 = p+ rs ∈ P + rR. Therefore, P is maximal.

(ii) The previous point implies that it is sufficient to show that the set of
maximal ideals of R is finite.
Let M1, . . . ,Mn+1 be different maximal ideals of R. We want to show
that

M1 · . . . ·Mn+1 (M1 · . . . ·Mn

Since the Mi are maximal ideals, we can find for every i = 1, . . . , n an
element fi ∈ Mi \Mn+1. If we have equality in the previous inclusion,
then we have

m1 · . . . ·mm ∈M1 · . . . ·Mn = M1 · . . . ·Mn+1 ⊂Mn+1,

which is impossible.
Now, suppose that the set of maximal ideals of R is infinite. Then, we
can form an infinite strictly decreasing sequence of ideals

M1 )M1M2 )M1M2M3 ) . . . ,

which contradicts the fact that R is artinian.

Proposition A.2
Let ϕ : A −→ B be a morphism of rings and I be an ideal of A. We denote by
Ie the ideal generated by ϕ(I). Then, we have B/Ie ∼= B ⊗A A/I.

Proof. We construct the following morphisms:

B
ψ //

π

��

B ⊗A A/I

η

{{
B/Ie

ψ

;;

B ×A/I.

τ

OO

η
oo

First, we define ψ(b) = b⊗ 1 which induces ψ. Then, we set η
(
b, a
)

= a · b and
this morphism induces η. Finally, one can check that ψ and η are inverses to
each other.

Lemma A.3
Let M be an R-module. Then, M = 0 if and only if Mm = 0 for each m ∈
MaxSpecR.
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Proof. IfM = 0, thenMm
∼= M⊗Rm = 0. Now, suppose thatMm = 0 for each

m ∈ MaxSpecR and suppose that M 6= 0. Choose m ∈ M \ {0} and consider
ann(m) = {r ∈ R : rm = 0}. This ideal is a proper ideal of R, since 1 does not
belong to it. Therefore, it is contained in some maximal ideal m. Since m

1 = 0,
there exists r ∈ R \M such that r = 0. Contradiction.

Lemma A.4
Let B be a ring and write SpecB =

⋃
iD(bi), where D(bi) is the principal open

subset B \ V(〈bi〉). If each Bbi is a A-algebra of finite type, then so is B.

Proof. First, remark that since SpecB is compact, then we can suppose that
the number of the D(bi) is finite. By hypothesis, there exists for each i a set of
elements bij

b
ki
i

of Bbi which generate Bbi as an A-algebra. Now, we let C denote

the A-algebra generated by the bij , bi, bkii , that is: C is a finitely generated
A-algebra, it contains the bi and Cbi ⊃ Bbi for each i. Since the D(bi) form
a covering of SpecB, there exists some b′i such that 1 =

∑
i bib

′
i. We let D

the sub-A-algebra of B which contains both C and the b′i. For each natural
number k, taking the k-th power of the expression 1 =

∑
i bib

′
i gives a relation

1 =
∑
i b
k
i di,k for some di,k ∈ D. Now, we want to show that B = D. Let

b ∈ B. For each i, we have b
1 ∈ Bbi ⊂ Cbi . Hence, there exists some ci ∈ C and

some mi ∈ N such that bmii b = bmii ci for every i. Taking m = maxmi gives us
b =

∑
i(bb

m
i )di,k ∈ D, as required.

Proposition A.5
Let R be a local ring with and let I be an ideal of R. Let M be a finitely
generated R-module. Suppose that m1, . . . ,mt ∈ M/IM generate M/mM as a
R/I-module. Then, m1, . . . ,mr generate M as a R-module.

Proof. Let N be the submodule of M generated by m1, . . . ,mt. Since the
composition N −→ M −→ M/mM is surjective, we have M = N + mM .
Hence, Nakayama’s lemma implies that N = M , as required.

Corollary A.6
Let R be a local ring with maximal ideal m and residue field k. Let M be a
finitely generated R-module. Then, M ⊗R k ∼= 0 implies M = 0.

Corollary A.7
Let R be a local ring and let I be an ideal of R. Let M be a finitely generated
R-module. Then, I/I2 ∼= 0 implies I = 0.
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Table of notations

Coh(X) The category of quasi-coherents modules over the scheme X

Grp The category of groups

ht p Height of the prime ideal p

κ(x) Residue field at x

mx Maximal ideal of OX,x

Nat(F,G) Natural transformations between the functors F and G

Pic(X) Picard group of X

RMod The category of left R-modules

Rng The category of rings

Sch Category of schemes

Schét Category of schemes with étale morphisms

Schoi Category of schemes with open immersions as morphisms

Sch(S) Category of schemes over the scheme S

Set The category of sets
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