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CONTENTS

Abstract

The open subsets of the Zariski topology are often too big to apply some
concepts of differential geometry to the theory of schemes. The notion of a
Grothendieck topology (or site) on a category, which generalizes the open cov-
erings of a topological space, enable us to work with finer topologies. The goal
of this project is to introduce the concept of site and to apply it to the cate-
gory of S-schemes. We will present different topologies on this and state some
applications:

e the étale topology is related to Galois theory;
e the fpqc is useful to study some descent problem:;

e the fppf topology allow us to study the representability of the relative
Picard functor.



In this project, we use the following conventions:

e All rings are assumed to be commutative with unit.

e A compact topological space is what many authors call quasi-compact: when
I speak about a compact topological space, I do not assume any Hausdorff
condition.

1 Prerequisites

1.1 Fibred product and fiber of a morphism over a point

Definition 1.1 (Pullback)

Let f : X — Z and g :' Y — Z be two morphisms of a category €. The
pullback of f and g (if it exists) is an object W and a pair of two morphisms
7 W —Y and g : W — X of € such that go f' = fog'. Moreover, these
morphisms must satisfy the following universal property: for every object W' of
€ and every pair of morphisms " : W' — Y and g : W — X such that
fog” =gof”, there exists a unique morphism h : W' — W which makes the
following diagram commute:

We say sometimes that W is the product of X and Y over Z.

Definition 1.2 (Fibred product of two S-schemes)
Let X andY be two S-schemes. Then, the fibred product of X and Y owver S,
written X XgY, is the pullback of X andY over S.

Remark 1.3
If S = Spec R, we may write X xr Y instead of X xgY.

Proposition 1.4
Let f: X — S and g: Y — S be two S-schemes. Then, their fibred product
over S erists.
Proof. Different steps of the construction:
(i) Affine case.
(ii) For some open subset U of X, use the product X x Y to construct U xgY.

(iii) Construct X xg Y from a collection X; xg Y, where the X;’s form an
open covering of X.

(iv) X and Y are any schemes and S is affine.
(v) Conclusion.
Details:

(i) First, we consider the case where X,Y and S are affine. Hence, we have
some ring morphisms ¢ : C — A and ¢ : C' — A. Thus, we can consider
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the tensor product A ®c B and the obvious maps ¢ : B — A ®c B and
1 : A — A®c B. Hence, we have the two following commutative squares:

A®c B 5 B Spec A ®c B Spec B
Spec
P ol
A<—*" ¢ Spec A ——— > Spec C

Using the properties of the tensor product and the equivalence of cate-
gories between the category of commutative unit rings and the categories
of affine schemes gives the required result.

(ii) Suppose that we have the fibred product of X and Y over S and that
U C X is an open subset. We claim that p)_(l(U ) is a fibred product for
U and Y over S. Suppose we are given a scheme Z and two morphisms
f:Z—)UandgzZ—>Ysuchthatgog:foz'Of(wherei:U—)X
is the inclusion). We have the following diagram:

where 6 is induced by the universal property of the fibred product. Since
f(Z) c U, we have 6(Z) C px'(U). Therefore, the morphism # factors
through p3'(U), as required. It is clear that this morphism is unique.

(iii) Suppose we are given the fibred products X; xsY. We want to glue these
schemes to obtain X xgs Y. For ¢ and j, denote by X;; the intersection
X; N X, and by U;; the preimage p}} (X;;) which is the fibred product of
X;; and Y over S, by the previous step. Now, Uj; is also the fibred product
of X;; and Y over S which means that we have an unique isomorphism
wij : Uij — Uj;. Using the uniqueness of the map in the universal
property, one can show that this isomorphisms are compatible. Hence, we
can glue the schemes X; xg Y via the isomorphisms ¢;; to get a scheme
P (we get the projections px : P — Y and py : P — Y by gluing the
projections from X; xgY to X; and Y).

Let Z be a scheme and let f Z — U and g g Z — Y be two morphisms
such that gog= fo f. If welet Z;, = f~ 1(X;), then we get a collection
of morphisms

Zi——=X; xgY—s X xgY

which are compatible with f’ Z, 1 Z; — X;and g: Z — Y. Gluing these
morphisms gives the required morphism 6 : Z — P which is compatible
with f and §. Moreover, if 6 : Z —» P is another compatible morphism,
then we have #; = 6; which implies that 8 = 6, as required. Hence, P
satisfies the universal property of the fibred product of X and Y over S.

(iv) Using the previous step we can construct the fibred product of X and Y
over S if S is affine.



1.1 Fibred product and fiber of a morphism over a point

(v) Let S; be an affine covering of S and let X; = f~1(S;) and V; = g71(9;).
The previous point implies that the fibred products X; xg, Y; exist. If
Z is a scheme and if f :Z — X; and g : Z — Y are two compatible
morphisms (with X; — S and Y — S), then § must factor through
Y;. Hence, X; x g, Y; satisfies the universal property of the fibred product
of X; and Y over S. Gluing the schemes X; xg Y (see (iii)) gives the
required product X xgY.

O

Example 1.5
Let X =A%, Y = AR and Z = Spec K. Then, we have

X XY 2 Spec(K[x1,..., 2, @k KYy1,...,ym]) 2 AR

Definition 1.6 (Base change)
Let f: X — Y and g : Y' — Y be two morphisms of schemes. We say that
the morphism X xy Y’ — Y’ is the base change of f by g.

Definition 1.7 (Property stable under base change)
Let (P) be a property of morphisms of schemes. We say that (P) is stable under
base change if for each morphism f : X — Y which satisfies (P), then every
base change of f by a morphism g also satisfies (P).

Examples 1.8

We will see that the followings properties are stable under base change:
(i) being flat (Proposition 2.20);
(ii) being surjective (Corollary 1.18);

)
)
(iii) being (locally) of finite type (Proposition 1.25);
(iv) being unramified or étale (Proposition 4.39);
(v) being quasi-compact (Proposition 5.5);
(vi) being surjective (Corollary 1.18);

)

(vii) being fpqc (Proposition 5.6).
Proposition 1.9
Let X — Z and Y —> Z be two closed immersion into an affine space Z =

Spec R. Then, the underlying topological space of X Xz Y is isomorphic with
XnY.

Proof. We know (see [Har77, Corollary I1.5.9]) that there exists two ideals I
and J of R such that X = SpecR/r and Y = Spec R/j. Then, we have

X xzY = Spec (R/(I + J)), as required. O

Example 1.10
Let K be an algebraically closed field (with characteristic different from two).

Take X = Spec (K[m, y]/<x2 +y? - 1>) (the unit circle), Y = Spec (K[x, y]/<x>)
(the y-axis), and Z = A%. The number of closed points of intersection X NY,
should be two (points corresponding to (0,41)). We have
K[(E,y]/(xZ —+ y2 — 1> ®K[3c,y] K[xay]/<l‘> 52 K[%?JV(:UQ + y2 — 17.’L‘>
%K[y]/<y2 —1) 2K x K,

where A.2 denotes the Proposition A.2 of the appendix. Now, Spec K x K has
two closed points, as required.
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Definition 1.11 (Fiber over a point)

Let f: X —'Y be a morphism of schemes and let y € Y. We define the fiber
over y to be the scheme X, = X Xy Speck(y), where k(y) denotes the residue
field of y on'Y and Speck(y) — Y is the canonical morphism.

Example 1.12
Consider the morphism f : X = Spec@[m,y]/<y2 —z) — A}, induced by
the obvious morphism Q[z] - Q[z,y]——=QJz, y] /<y2 — ) (one can think

of the projection of the parabola y?> = x on the z-axis). Let us compute some
fibers:

Fiber over t > 0 We have:
X(o1) = X %1 Specr((z —1))
= Spec (Qfz,81/1y2 - 2) Bote Qlie—) Q) Qe o)
= Spec (Q[:c, Y2 — z) @ale) Qlel/(z — t>)
= Spec (Qfr.l/iy? — 2,2 — 1)) = Spec (Qul/gy? — 1))

A2

= Spec(Q x Q),

where A.2 denotes the Proposition A.2 of the appendix. Therefore, the
fiber over ¢t has only two elements: two closed points corresponding to

(t, V).

Fiber over 0 In a similar way, we find

X0y = Spec (Qlyl/y2) )

The only prime ideal of Q[y] /<y2> is the <y>/<y2> one which corresponds to
y=0.

Example 1.13
Let f : X = SpecZ[i] — Y = SpecZ. We want to compute the fibers over
different points of Y.

Fiber over the generic point We have
Xo = Spec (Z[i] ®z Q) = Spec Q[i].

Hence, the fiber over 0 has only one element.

Fiber over a prime p We have

X(py = Spec (Z[i] @7 F,) (Fp[x]/<x2 + 1>>

by
Now, we consider three cases:
(i) If p = 2, then X5 has only one point, corresponding to <x+1>/(x +1)2
(ii) If p=1 mod 4, then —1 = a? and X(py = SpeclF, x F,.
(iii) If p = 3 mod 4, then z2 + 1 is irreducible in F,, and X(py = SpeclF,,.
Proposition 1.14

Let f : X — Y be a morphism of schemes and y € Y. Then, the projection
p: X Xy Speck(y) — X induces a homeomorphism from X, to f~'(y).

Proof. See [Liu06, Proposition 3.1.16]. O

Proposition 1.15
Let f : X — Y be a morphism of schemes and let x € X and y = f(x). Then,

~

!
we have OXWC/ = OX,r/myOX,z» where ' € X, corresponds to x.



1.2 Morphisms (locally) of finite type, finite morphisms

Proof. We can consider the case where X = Spec B, Y = SpecA, x = p €
SpecB and y = q € SpecA. Then, 2’ € X, correspond to the prime ideal
p R4 k(y) of B®4 k(y) and we have

Ox, 2 = (B A n(y))( = By ®a, k(y)

p®ar(y)) Bp/qu = OX*””/myOX,w'

=
A2
O

Lemma 1.16
Let f: X — S and g : Y — S be morphisms of schemes with the same target.
Points z of X Xg Y are in bijective correspondence to quadruples

(x,9,5,p)

where v € X,y €Y, s € S are points with f(x) = s, gly) = s and p is a
prime ideal of the ring k() ®y () k(y). The residue field of z corresponds to the
residue field of the prime p.

Proof. See [Aut, Schemes, Lemma 17.5]. O

Corollary 1.17

Let X ——=S<——-Y be two S-schemes. Let x € X and lety € Y. Then, there
exists z € X xXg Y such that z is mapped to x and y under the projections if
and only if x and y lie over the same point s € S.

Corollary 1.18
Surjectivity is stable under base change.

Proof. Let f : X — Y be a morphism of S-schemes and let S’ — S be a
morphism of schemes. We have the following commutative diagram:

X b X
fsr
q

Y

where Xg is the fibred product of X and S’ over S and Ys: is the fibred
product of Y and S’ over S. Let Z C X. By the previous Lemma, we have
qil(f(Z)) = fsrop~Y(Z). Taking Z = X gives the surjectivity of fg. O

|
i,

S/

1.2 Morphisms (locally) of finite type, finite morphisms

Definition 1.19 (Morphism locally of finite type, morphism of finite type)
Let f: X — Y be a morphism of schemes. We say that [ is locally of finite
type if there exists some affine open covering V; = Spec B;, j € J, of Y such
that f~1(V;) = U, Spec A;; for every j, where each A;j is a finitely generated
Bj-algebra. If in addition every f=(V;) can be covered by a finite number of
such algebras, we say that f is of finite type.

Definition 1.20 (Finite morphism)

Let f : X — Y be a morphism of schemes. We say that f is finite if there
exists some affine covering V; = Spec B; of Y such that f~(V;) is affine equal
to Spec A; for every i and such that A; is finitely generated as a B;-module.

Examples 1.21 (i) The projection of the plane A2 on Al is of finite type
but it is not finite.
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(ii) The projection f : Spec K[z, y]/(32 4 42 — 1) — Al is finite.

(iii) Let K C L be two fields. Then, the morphism Spec L — Spec K is finite
if and only if L is a finite extension of K.

(iv) Let f : X — Y be a morphism of finite type and « € X. Then, the
morphism Spec Ox , — Spec Oy, s, is not necessarily of finite type.
For example, K[z] is of finite type over K but K[z], is not of finite type
over K.

Proposition 1.22

Let f: X — Y be a morphism of schemes. Then, f is locally of finite type
if and only if for every open affine subset V.= Spec B of Y, there exists a
covering of f~*(V) consisting of affine subsets U; = Spec A; such that each A;
is a finitely generated B-algebra.

Proof. Let V' = Spec B be an affine open subset of X. We know there exists
some affine open covering V; = SpecBj, j € J, of Y such that f~}(V;) =
\U; Spec A;; for every j, where each A;; is a finitely generated Bj-algebra. For
each j, we choose an affine covering of V' N Vj by principal open subsets:

ViV =JVir  Vie=Spec((B))y), b € Bj.
k

Now, denote by ai’j the image of bf; in A;;. Now, we have

F7(Spec ((By)y;) ) = Spec ((4ij),11)
and each (Aij)ai‘,j is a finitely generated (Bj)bi—algebra. To summarize: we can

cover V by open affine subsets B, such that each ft (BT) is covered by open
affine subsets /Nlm with flm a finitely generated Br—algebra. Now, we have to
show that all these flm are finitely generated B-algebra, which is just Lemma
Ad4.

The converse is clear. O

It is easy to prove the following similar statement for finite morphisms:

Proposition 1.23

Let f : X — Y be a morphism of schemes. Then, f is locally of finite type if
and only if for every open affine subset V= Spec B of Y, there exists a finite
covering of f=*(V) consisting of affine subsets U; = Spec A; such that each A;
is a finitely generated B-algebra.

Corollary 1.24
Let f : X — Y and g : Y — Z be two morphism of (locally) finite type.
Then, go f is (locally) of finite type.

Proposition 1.25
Any base change of a morphism (locally) of finite type is (locally) of finite type.

Proof. Let f: X — Y be a morphism locally of finite type andlet g : Z — Y
be a morphism of schemes. We have to show that py : X Xy Z — Z is locally
of finite type. We consider an open affine covering Y; = SpecC; of Y and
we let X; = f~4(Y;) and Z; = g~ 1(Y;). We choose some open affine covering
Zir, = Spec By, of Z; and X,;; = Spec A;; of X; (by hypothesis, each A4;; is a
C;-algebra of finite type). Using the properties of the fibred product, we see
that p~1(Zi) = X Xy Zir, = X; Xv, Zi- Since gopz = fopx, the set pgl(Zi )
is covered by the open sets X;; Xy, Z;r = Spec (Aij ®c, Bik). Since A;; is a
C;-algebra of finite type, A;; ®c, B is a B;i-algebra of finite type.

If f is of finite type, then the number of X;; is finite for each ¢ and so the
number of A;; ®c, By is finite for each 7 and each k, which implies that pyz is
of finite type. O



1.3 Dimension

The following Proposition gives an interesting property of finite morphisms.

Proposition 1.26
Let f: X — Y be a finite morphism and y € Y. Then, f~1(y) is finite.

Proof. Without loss of generality, we can suppose that f : Spec A — B. The
Proposition 1.14 implies that our claim is equivalent to show that X, is finite. If
we denote by q the ideal corresponding to y, then we have Xq = Spec A®pk(q).
Since A is a finitely generated B-module, X is a finitely generated k(q)-module,
that is a finite dimensional vector space. Hence, A ® g k(q) is artinian and we
use Proposition A.1 to see that X is finite, as required. O

Remark 1.27

Even if the fibers of a morphism f are all finite, f might not necessarily be finite.
For example, consider the morphism f : Spec(C[:v,y]/(xy —1) — Spec Clz]
(which can be viewed as the projection of the “graph” of z — % on the z-axis).
The different fibers are finite (in particular X,y = () but f is not finite, since
Clz, y] /(a:y — 1) is not a finitely generated C[z]-module. For the last assertion,
we prove that we have C[:z:,y]/<xy —1) = (C[:z:, %] Let ¢ : Clz,y] — (C[sc, %]
the ring homomorphism which sends a polynomial f(z,y) to f(z, 1). It is clear
that ¢ is a surjective ring homomorphism. Furthermore, we have (zxy — 1) C
ker ¢. For the other inclusion, we consider a polynomial f(z,y) such that
f(x, %) = 0. This means that we can write f(z,y) = g(z,y)(xy — 1) with
g(z,y) € k(x)[y]. We write g(z,y) = g}(f(cg) with g(z,y) primitive and h(z) in
C[z]. Hence, we have h(z) - f(z,y) = §(x,y) - (zy — 1). Now, h must divide the
contents of (xy — 1) but since xy — 1 is primitive, we have h € C. Finally, this
implies that f € (xy — 1) and thus C[x,y}/@y —1) = C [x, %], which is not a
finitely generated C[z]-module.

1.3 Dimension

1.3.1 Krull dimension

Definition 1.28 (Height of a prime ideal)
Let p be a prime ideal of a ring R. The height of p, which is denoted by ht p, is
the supremum of n € N such that there exists a chain of prime ideals of R

Remarks 1.29 (i) We count the number of strict inclusions in a chain and
not the number of prime ideals which appear.

(ii) If R is an integral domain, then we may have p,, = 0.
Definition 1.30 (Krull dimension of a ring)

The dimension, or Krull dimension, of a ring R is the supremum of htp taken
over all primes p. We denote by dim R the Krull dimension of R.

Remark 1.31
If p is a prime ideal of R, we have dim R, = ht p.

Examples 1.32 (i) The dimension of a field is 0. Conversely, if R is a domain
which has dimension 0, then R is a field.

(ii) If K is a field, then the fact that K[z] is a PID implies that dim K|[x] = 1.
More generally, if R is a PID but not a field, then dim R = 1.

(iii) If R is an artinian ring, then dim R = 0 (see Proposition A.1).

11



1 PREREQUISITES

(iv) Let K be a field. Since Klz1,... ,xn]/@h L) = Klzgt1,-..,2y), we
have the following sequence of prime ideals

0C (1) C{(T1,22) C ... T {@1,...,Tp).

Therefore, dim K[x1,...,z,] > n (see next theorem for a better result).

Theorem 1.33
Let R be an integral domain which is a finitely generated algebra over K. Then,
dim R is equal to the transcendental degree of R over K.

Proof. See [MR89, Theorem 5.6]. O

Corollary 1.34
Let k be a field. Then, we have dim k[z1,...,z,] = n.

1.3.2 Dimension of a topological space

Definition 1.35 (Dimension of a topological space)
Let X be a topological space. The dimension of X, denoted by dim X, is the
supremum of n € Ny such that there exists a chain

20 C 1 S22 S ... S 2y
of closed irreducible subsets of X.
Remarks 1.36 (i) Zy # 0 since the empty set is not considered to be irre-
ducible.
(if) If X itself is irreducible, then we may have Z, = X.
Example 1.37
If X = Spec K|z,y], we have the following chain of irreducible closed subsets:

X, the “vertical line” and the point corresponding to (x,y). These closed and
irreducible subsets correspond to the prime ideals 0, (z) and (z,y).

Definition 1.38 (Codimension of a closed irreducible subset)

Let X be a scheme and Z be a closed irreducible subset of X. We define the
codimension of Z in X, written codim(Z; X), as the supremum n € Ny such
that there exists a chain

Z:ZongganCX
of closed irreducible subsets.

Remarks 1.39 (i) Again, we count the number of strict inclusions instead of
the number of irreducible closed subsets occurring in the chain.

(ii) Let X =Y U Z. Then, it is easy to see that dim X = max{dimY,dim Z}.
Proposition 1.40
Let X be a topological space. Then:

(i) If Y is a subset of X endowed with the induced topology, then dimY <
dim X.

(i) If {U;}; is an open covering of X, then dim X = sup, dim U.
Proof. (i) Yy C Yy C ... CY, is a strictly increasing sequence of closed

irreducible subsets of Y, then Yy C Y] C ... C Y, is a strictly increasing
sequence of closed irreducible subsets of X.



1.3 Dimension

(ii) If Z is a closed irreducible subset of X, then U N Z is a closed irreducible
subset of U, if U N Z # (). Therefore, we have dim X < dim U; for every

. The point (i) gives the other inequality.
O

Definition 1.41 (Dimension of a scheme)
The dimension of a scheme is the dimension of its underlying topological space.

Since we have an “inclusion-reversing” bijection between prime ideals of a
ring R and closed irreducible subsets of Spec R, via p — V(p), we have the
following result:

Proposition 1.42
Let R be a ring. Then, dim R = dim Spec R.

Example 1.43
Let X = Spec K|z, y] /<y — 22)- Then, we have the following sequence of prime
ideals

0C {y—a®) C(z—1y—1).

Since dim A% = 2, then dim X = 1. In a similar way, we see that
dim Spec K[z, y, z]/<y —2?) = 2.

Proposition 1.44
Let X be a scheme and Y be a closed irreducible set of generic point 1. Then,
we have dim Ox , = codim(Y; X). One equivalent formulation is that dim Ox

is equal to codim (m, X) for every x € X.

Proof. First, we suppose that X = Spec R and we denote the point correspond-
ing to n by po. We have:

(i) we have “inclusion-reversing” bijection between prime ideals of a ring R
and closed irreducible subsets of Spec R;

(ii) V(p) =V(q) & p = qif p and g are prime ideals;
(iii) V(po) =Y;
Using these three points, we find that dim R,, = htpy = codim(Y; X). Now,

suppose that X is an arbitrary scheme. Fix an affine neighbourhood of x and
use intersection and closure to use the affine case. O

Example 1.45

Let X = A% and Y =Y = {y} for some closed point y of X. We know that the
maximal ideal of Ox , is the set of germs of functions which vanish at y. We
can take a line passing through y for Y; and Y5 = A%.. Then, the corresponding
ideals in Ox , are the ideals generated by germs of functions which vanish on
the line and the ideal 0 which corresponds to the zero polynomial.

13
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2 FLATNESS

2 Flatness

2.1 Flatness (for modules)

In this section, we use the approach of [Bou89).

Definition 2.1 (N-flat module)

Let M and N be two R-modules. We say that the module M is N-flat if,
for every injective morphism of R-modules f : N' — N, the corresponding
morphism id®@f : M @ N' — M ® N is injective.

Proposition 2.2

Let M and N be two R-modules. Suppose that for every finitely generated R-
submodule N of N the inclusion morphism M ® N — M®N is injective.
Then, M is a N-flat module.

Proof. Let f : N' — N be an injective morphism of R-modules. We can
suppose that N’ is a submodule of N and that f is just the inclusion. Now
suppose that x = Y1, m;®@n; € M ®N’ is such that Y, m; ®n; =0in M@ N.
We consider N = (n; : 1 <1i < n)g. By hypothesis, the composition of the two
following morphisms is injective

M®N—>M®N ——=Ma®N,
which implies that z = 0. O

Proposition 2.3
Let M be a N-flat module and K < N be a submodule of N. Then:

(i) M is a K-flat module;
(i) M is a N/ -flat module.

Proof. (i) This part is easy. Indeed, let f: N/ — K be a monomorphism.
Then, the composition N'——=K——>N is injective. Using the N-

id
flatness, we find that the composition M ® N’—®f>M QK——=M® N

is injective. Therefore, id ® f is also a monomorphism, as required.

(ii) Instead of considering any monomorphism, we suppose that N’/ —
N/k is the inclusion. Then, the following diagram is commutative and its
two rows are exact

0 K N’ N'/gg —0
0 K N N/ —0.

Then, we find

MK MaN —~MaN /g —>0

T
0— MoK >MaN—2~MeN/
The fact that f’ is a monomorphism follows from point (i) and the fact
that g is surjective follows from the right exactness of the functor M ® —.
Since id is surjective and since b is injective (by point (7)), the snake lemma
gives ker ¢ = 0, as required.
O



2.1 Flatness (for modules)

Proposition 2.4
Let M and {N;}; be R-modules such that M is a N;-flat module for each i.
Then, M is a @ M;-flat module.

Proof. See [Bou89, Lemma 5, paragraph 2, chapter . O

Definition 2.5 (Flat module)

Let M be an R-module. We say that M is flat (over R) if M is a N-flat
module for every R-module N, that is if every injective morphism of R-modules
f: N' — N gives rise to an injective map idQf : M @ N' — M ® N.

Proposition 2.6
If M is a free R-module, then M 1is flat.

Proof. First, note that we can suppose that M = RU) = P, R Let f:
N — N’ be an injective morphism of R-modules. We have N @ M = N

and N’ @ M = N'") and the morphism corresponding to f ® idy; sends any
element ) . n; to >, f(n;). Hence, M is flat over R. O

Proposition 2.7

Let {M;}icr and {N;};er denote two families of R-modules. For eachi € I, let
fi + M; — N; be a morphism of R-modules. These morphisms induce a ho-
momorphism of R-modules f : @,c; M; — @, Ni, via Y, s — >, fi(xs).
Then, f is injective if and only if every f; is injective.

Proposition 2.8
Let {M;}; be a collection of R-modules. Then, €; M; is flat if and only if each
M; is flat.

Proof. Let f: N — N’ be a morphism of R-modules. We have the following
commutative diagram

QM@ N —— @, M@ N’

~l i~

@, (Mi@N) — @, (Mi@N/)'
The previous proposition allows us to conclude. O

Since every projective module is a direct summand of a free module, we get
the following corollary.

Corollary 2.9
Let P be a projective module. Then P is flat.

Proposition 2.10
Let M be an R-module. Then, M 1is flat if and only if M is R-flat.

Proof. If M is flat, then the morphism ¢ : M ® I — M ® R is injective for every
ideal I of R, by definition. Reciprocally, suppose that M is R-flat and consider
an R-module N. We must show that M is N-flat. Since N can be written as
R(J)/K7 for some set J, where R(/) denotes the sum @jeJ R, Propositions 2.3
and 2.4 imply that M is N-flat. Therefore, M is flat. O

Remark 2.11
Proposition 2.2 implies that it is sufficient to check that the canonical morphism
M ® 1 — M ® R is injective for every finitely generated ideal I.

Proposition 2.12
Let M be an R-module. Then:

15
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(3) If M is flat, then M, is a flat R-module for every p € Spec R.

(%) Ry is a flat R-module. More generally, if S is a multiplicative subset of
R, then ST'R is a flat R-module.

(iii) If R is a PID, then M is flat if and only if M is torsion-free.

(iv) Let R — S be a homomorphism of rings. If M is flat over R, then
M ®pgr S is flat over S.

(v) If R is flat over a ring S and if M is flat over R, then M is flat over S.

(vi) If O M’ M M 0 is an exact sequence of R-modules
and if both M' and M" are flat, then M is also flat (this is the reciprocal
to Proposition 2.3).

Proof. (i) Let p € SpecR and f : N — N’ be an R-linear map. Then, we
have
M,® N M, ® N’

% |=

M@ (Ry® N)—= M @ (R, ® N').

Since M is flat, the morphism M® (R, ® N) — M ® (R, ® N') is injective
and so is M, ® N — M, ® N’, as required.

(#9) Let M be an R-module and N be a submodule of N. Now, since we
have N @p S™'R =2 S™IN and M ®p S™'R = S~ M and since SN
is a submodule of S~'M, the morphism N ®z S™'R — M ®z S™'R is
injective, as required.

(791) We know that M is flat if and only if the morphism M ®I — M®R = M
is injective. Since R is a PID, M is flat if and only if M is torsion free.

(iv) & (v) Follows directly from the associativity of the tensor product.

(vi) We consider an injective morphism f : N — N’ and the following com-
mutative diagram

0——=MN—MIN—M"QQN——0

|

00— MOIN — MIN —— M"® N —— 0.

Then, the four lemma (special case of the five lemma) implies that the
morphism M @ N — M ® N’ is injective, as required.
O

Proposition 2.13 (Flatness and localization)

Let M be an R-module. Then, the followings are equivalent
(i) M is flat over R.

(%) M, is flat over R, for every p € SpecR.

(#4i) My is flat over Ry, for every m € MaxSpec R.

Proof. The associativity of the tensor product implies (i) = (4i). It is clear
that (4i) implies (4i¢). Now, suppose that f : N — N’ is an injective R-linear
map and let K = ker(id®@M) : M ® N — M ® N’. By hypothesis, we have
Ky = 0 for every maximal ideal m of R. Therefore, Lemma A.3 implies that
K =0 and thus M is flat over R. O

Proposition 2.14
Let ¢ : A — B a morphism of rings. Then, the followings are equivalent:

(i) B is flat over A;



2.2 Flatness (for schemes)

(1) for each Q € Spec B, the module Bq is flat over A,-1(q);
(#ii) for each @ € MaxSpec B, the module Bq is flat over A,-1(q)-

Proof. Again, it is clear that (i) = (i7) = (i44). To show that (¢i:) implies (7),
we consider some injective morphism of B-module v : N — N’. Then, we
show that ker (w ®Rid: N®4B — N' ®4 B) = 0 as in the previous proof. O

Proposition 2.15
Let R be a local ring of mazimal ideal m and M be a finitely generated module
over R. Then, the followings are equivalent:

(i) M is free;

(it) M 1is projective;
(#ii) M is flat.
Proof. We know already that the implications (i) = (i4) = (¢iz) hold. Hence,
it remains to show that if M is flat, then M is free. We know that M /s is
a finite dimensional vector space over R/y,. We choose a basis m1,...,m, of it

and elements my,...,my such that the image of m; in the quotient M/, py is
m;. Now, consider the following R-homomorphism

@0:R™ — M, e m,,

where e; denotes the i-th vector of the canonical basis of R("). Then, Nakayama’s
lemma implies that the map ¢ is surjective (see Proposition A.5). Let K denotes
its kernel and consider the following exact sequence

0 K R™ M 0.

By hypothesis, the following sequence is also exact:
0—=K®R/y—R™ @R/ — M ® Rjy — 0.

Since the last two terms are isomorphic, we have 0 = K ® R/ = K/nk-
Since K is also finitely generated, using again Nakayama’s lemma gives K = 0.
Hence, ¢ is an isomorphism and thus M is free. O

2.2 Flatness (for schemes)

We know that a morphism f : X — Y of schemes gives rise to a family of
schemes parametrized by Y: for each y € Y, we have the fiber X, = X xy
Speck(y). If f is a flat morphism, then we get, in some sense, a family of
schemes which varies continuously.

Definition 2.16 (Flat morphism of schemes)

Let f : X — Y be a morphism of schemes and let F be an Ox-module. We
say that F is flat over Y at a point x € X if Z, is a flat Oy, -module via the
map fg : Oyj(z) — OXJ.

We say that % is flat over Y if F is flat over Y at every x € X. We say that
X if flat over Y, or that f is flat, if Ox is flat over Y.

Definition 2.17 (Faithfully flat morphism of schemes)
We say that a morphism of schemes f : X — Y 1is faithfully flat if it is flat
and surjective.

We have, indeed, the following result:

Proposition 2.18
Let o : R — S be a homomorphism of rings and f : Spec.S — Spec R be the
corresponding morphism of schemes. Then, ¢ is flat if and only if f is flat.

17
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Remark 2.19
Let f: X — Y be a morphism of schemes. The Proposition 2.13 implies that
f is flat if and only if f is flat at « for every closed point =z € X.

Proposition 2.20
Let f: X — Y be a morphism of schemes.
(i) If f is an open immersion, then f is flat.

(ii) Let g:Y — Z be a flat morphism of schemes and let F be an Ox -module
which is flat over Y. Then, F is flat over Z.

(iii) Flatness is stable under base change.

(iv) Let A, B be two rings and let ¢ : A — B be a homomorphism. Denote by
f: X =SpecB — Y = Spec A the corresponding morphism of schemes.

Let M be a B-module. Then, M is flat over Y if and only if M is flat
over A.

Proof. (i) Indeed, ff is an isomorphism for every z.

(ii) See (v) of Proposition 2.12.

(ili) We can reduce to the affine case and use (iv) of Proposition 2.12.
(iv) We have

M flat over Y < (M)q flat over By, Vq € SpecB

< M, flat over B, Vq & SpecB
< M flat over A.

Remark: for the last equivalence, one can proceed as in Proposition 2.14.
O

Examples 2.21 (i) For n > m, projections from A™ onto A™ are flat.

(ii) The morphism of schemes Spec K — Spec K[x]/<x2> is not flat. To see
this, we have to show that the morphism of rings ¢ : K[x]/<x2> — K,
which sends f to f(0), is not flat. Since z -1 = 0, the point (iii) of
Proposition 2.12 implies that ¢ is not flat.

(iii) The morphism Spec K[x,y]/<xy> — Spec K[z] induced by the obvious
morphism is not flat since K|z, y] /<acy> is not torsion-free over Spec K|z].
Note that this map corresponds to the projection of the “cross” zy = 0 to
the affine line. Moreover, the fiber over 0 is A}, which is of dimension 1,
while the fiber over another points contains just one point (dimension 0).

The next proposition show that under some hypothesis, the dimension of
the fibers must be constant.

Notation 2.22
Let X be a scheme and x € X. We denote the Krull dimension of Ox , by
dim, X.

Proposition 2.23
Let f : X — Y be a flat morphism of schemes of finite type over a field k. For
any point x € X, let y = f(x). Then, we have

dim,(X,) = dim, X — dim, Y.

Proof. See [Har77, Proposition IIL.9.5]. O



3 Grothendieck topology

3.1 Prerequisites of category theory

The goal of this section is to recall (or present) a few notions of category the-
ory. We try to present the relate the introduced categorical concepts with the
algebraic geometry.

If M is a smooth manifold, then we can recover the underlying set of M by
considering the set Hom({*}, M), in the category of smooth manifolds. In a
similar way, as we will see below, the underlying set of a group G is isomorphic
to the set Homagyrp(Z, G). If we want to recover the underlying set of a scheme,
over a fixed scheme is not sufficient. For example, if X denotes Spec C[z, y], then
the set Hom(Spec C, Spec C[z, y]) is in bijection with the set of rings homomor-
phisms ¢ : Clz,y] — C. Such an homomorphism is determined by the images
of x and y. Hence, we have the isomorphism Hom(Spec C, Spec Clx,y]) = C?
(and we do not “catch” the points corresponding to the zero ideal or to irre-
ducible curves induced by irreducible polynomials f). However, if we consider
for a scheme X the sets Hom(Y, X), where Y is a scheme, then we will be able
to recover all these informations. The association Y —— Hom(Y, X) is a general
construction which is presented in the next notation.

Notation 3.1

Let € be a category and A € € an object. We denote by Hom(A4, —) the
covariant functor which sends any B € ¢ to Hom(A4, B) and any f: B — B’
to

Hom(4, f) : Hom(A, B) — Hom(A, B')
gr—> f og.
One can define the contravariant functor Hom(—, A) in a similar way. Some-

times, we will denote Hom(A, —) by h** and Hom(—, A) by ha.

Definition 3.2 (Functor of points)
If X is a scheme, the functor hx is called the functor of points of X.

Definition 3.3 (Y-valued points of a scheme)

If X is a scheme, the elements of the set hx(Y') = Hom(Y, X) are the Y-valued
points of X. If Y = Spec R, we prefer to call the set hx (Spec R) the R-valued
points of X.

Example 3.4

19

Let X = SpecZ[z1, ... ,9cn]/<fl7 o fn) and R be any ring. The set Hom(Spec R, X)

is in bijection with morphisms of rings from Z[z, ... ,$n]/<f1, oo f) O R,
which are specified by tuples (r1,...,7,) € R™ such that f;(r1,...,r,) =0 for
every 1 < i < m. Therefore, for a ring R, the elements of

{(ri,...,rn) €R™: fi(r1,...,7) =0,V1 < i <m}
are the R-valued points of Spec Z[z1, ... ,:1cn]/<fl7 i fm)

Definition 3.5 (Representable functor)

Let € be a locally small category (i.e. a category in which the hom-sets Hom(A, B)
are sets) and F a functor from € to Set (the category of sets). We say that
F' is representable if there exists an object A of € and a natural isomorphism
a:Hom(A,—) — F. If F is a contravariant functor, we say that F is repre-
sentable if there exists a natural isomorphism « : Hom(—, A) — F.



3 GROTHENDIECK TOPOLOGY

Examples 3.6 (i) Let F': Grp — Set be the forgetful functor, where Grp
denotes the category of groups. Then, we have F' = Homg,p(Z, —), via
the natural transformation

G — Homg,p(Z, G)
gr— ¢g:n+—g", VgeG,nez,

for every group G.
(ii) Let F': gMod — Set be the forgetful functor, where pMod denotes the
category of R-modules. Then, we have a natural isomorphism of functors
F =~ Hom Mmod (R, —), via the natural transformation
M — HomRMod(R, M)
me— ¢m:r—>r-m, VYméeM,r€R,

for every R-module M.

(iii) Let R be a ring and let M, N be two R-modules. We consider the functor
F : RpMod — Set, from the category of R-modules to the category
of sets, which sends an R-module L to the set Hompg (N, Hompg (M, L))
Because of the tensor-hom adjunction, we have a natural isomorphism

Homp (N, HomR(M, L)) = Hompg (N ®r M, L)
Hence, N ® g M represents the functor F.

Lemma 3.7 (Yoneda’s lemma)

Let € be a locally small category and F' : € — Set be a functor. Then, for ev-
ery A € € we have Nat( Home (A, —), F) = F(A), where Nat( Homg (A, —), F)
denotes the set of natural transformations from Hom(A, —) to F.

Proof. We set
® : Nat(Home (A, —),F) — F(A)
ar— aa(ida).

Moreover, we define

W : F(A) — Nat(Homg (A, —), F)

a+— Y(a),

where the B-component of ¥(a) is

U(a)p : Homg (A4, B) — (B)

f— F(f) (a).

A direct computation shows that this map is well defined, that is: the ¥(a)p
are the components of a natural transformation ¥(a). We get easily that these
maps are inverse of each other, as required. O]

Remarks 3.8 (i) In particular, if B is an object of € and if F = Home (B, —),
then we have

Nat(Homg (4, —), Homg (B, —)) = Nat(h*, h*) = Home (B, A).

~

(ii) One can prove in a similar way that Nat( Hom(—, A), F) = F(A) for every
contravariant functor F' : € — Set.
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Notation 3.9 (Category of functors)
Let € be a category and .o/ be any category. We denote by &/ the category
of functors from % to <.

We are interested in Yoneda’s lemma because of the following example.

Example 3.10 (The Yoneda embedding)

Let ¥ denote some locally small category. In this case, we can consider the
functor category Set®” which objects are contravariant functors from € to
Set and morphisms are natural transformations between them. Then, we can
define a functor G : € —» Set? " which associates to every object A of €
the functor Hom(A, —) and to every morphism f : A — A’ the usual natu-
ral transformation ¢4(f) : Hom(—, A) — Hom(—, A’). The Yoneda’s lemma
implies that G is fully faithful, that is G is an embedding of ¥ into Set®”.
Moreover, the contravariant representable functors from % to Set are the ones
who lie in the image of G.

Example 3.11 (Functor of points)

Let &ch be the categories of schemes. The Yoneda’s lemma implies that
Hom(—, X) : &ch — Set®"™ | the functor of points of a scheme X, is fully
faithful.

3.2 Grothendieck topology

In the definition of a sheaf (of abelian groups) we start by making a category
Ix from a topological space X: the objects of x are the open sets of X and
the morphisms are the inclusions between open sets. Since an open subset V' of
an open set U is equivalent to an inclusion morphism V' — U, an open covering
Uicr Ui of a set U can be given by a collection of morphisms {Ui—>U}Z_.
We know the three following properties of open coverings:

(i) If U is an open set, then { U——=U } is a covering of U.

(ii) If V. C U are open sets and {Ui—>U}i is a covering for U, then the
collection {Ui N V—>V}i is an open covering of U. We remark that
the intersection U; NV can be identified with the pullback (also called
fibred product) U; xy V.

(iii) .If {U,-*.>U}i and {V;;—=U; }j are coverings, then {‘/inU}iJ
is a covering.

The previous observations motivate the following definition:

Definition 3.12 (Grothendieck topology, site)
Let T be a category. A Grothendieck topology, or a site, on 7 is a collection

Cov(.7) of sets {U¢L>U}Z.el (here, we allow I = 0) of morphisms of T
called coverings. This collection must satisfy the following properties:
(i) If p: V. — U is an isomorphism, then {¢} € Cov(.7).
(éd) If {U¢—>U}i € Cov(T) and ¢ : V. — U is a morphism, then the
fibred product U; xy V' exists for every i and {Ui XU V*>V} s a
covering.

(i) If{Uii>U}i € Cov(7) and if{Vij&Ui }j € Cov(.7) for every i,

i0%ij
then {VMW—;U}” is also a covering.

A site is a pair (F,Cov(T)).

Remarks 3.13 (i) We will often abuse the notations and denote a site by .7
instead of (7, Cov(7)).

21
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(ii) Ome can easily see that if X is a topological space and if Jx denotes
its category, then the collection of open coverings (in the usual meaning)
forms a site on Jx.

Definition 3.14 (Morphism of topologies, morphism of sites)
Let T and T be two topologies. A morphism of topologies f: .7 — T’ is a
functor such that:

(i) For every covering { U—2su }z of 7, the collection {f(Ul)M-f(U) }z
is a covering of J'.

(i1) For every covering {UiLU}i of 7 and every morphism V——=U in
T, the morphism

fUi xu V) — f(Us) x gy (V)
is an isomorphism for every i.

Remark 3.15
It is easy to see that the identity functor from a site to itself is a morphism of
topologies. Moreover, a composition of two morphisms of sites is again a mor-
phism of sites. Therefore, one can consider the category of sites and morphisms
between them.

Example 3.16

Let X and Y denote two topological spaces and f : X —» Y be a continuous
map. Then, we obtain a map of sites f : %y —» Jx by setting f(V) = f~1(V)
for every open set V of Y. Furthermore, if i : U — V' is the inclusion between
two open sets of Y, then we let f(i) be the inclusion from f=1(U) to f~1(V).

Example 3.17
Let G be a topological group and let € be the category of continuous left G-sets.
If {U;}icr and U are objects of €, we say that {UZ—LU} is a covering of U
if:

(i) each ¢; is continuous morphism of G-sets;

(ii) we have |J,c;imyp; = U.
The fibred product of two continuous left G-sets X N4 <LY is taken in
the category of sets: the underlying set of X xz Y is {(x,y) € X XY : p(x) =
P(y)} and X xz Y is endowed with the structure of a continuous G-set via

Gx (X xzY)— (X xzY)
(gv (l'vy)) — (g " Z, g y)7

which is well-defined since

olg-z)=g-o(x)=g-9Yy) =v(g-v),
and thus (g -z,g-y) € X xz Y if (z,y) € X xz Y. It is easy to see that ¢ with

these coverings is a site. We denote this site by T¢.

Definition 3.18 (Presheaf)
Let T be a site and € an abelian category. A presheaf on 7 with values in €
is a contravariant functor from 7 to €.

Remark 3.19
Let 7 be a site, € be an abelian category and let F' be a presheaf on .. Let U

be an object of .7 and {UiL.U}iEI be a covering of U. For every i,j € I, the
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canonical projections U; xy U; — U; and U; Xy U; — U; induce morphisms
Nij - F(UZ) — F(UZ XUUj) and 1/Jij : F(UJ) — F(Ul XUU]‘) which give rise to
morphisms 7; : F(U;) — [[; F(U; xu U;) and ¢ : F(U;) — [[; F(Ui xu Uj).
Taking the product over I gives rise to the following two morphisms

n
H'LF(UZ) TH”F(UZ XU Uj)'

Definition 3.20 (Sheaf)
A sheaf with values in € is a presheaf F with values in € such that for ev-

ery covering {U¢L>U}Z. the following diagram (see previous remark for the
definition of n and 1) is an equalizer

F(U) HHiF(Ui) #Hi,jF(Ui XU Uj)'

Remarks 3.21 (i) If T is a topological space, 7 is its category and € = Ab,
the previous condition is equivalent to the local condition and the gluing
condition of sheaves of abelian groups.

(ii) An abelian sheaf (or abelian presheaf) denotes a presheaf with values in
Ab (or a sheaf with values in Ab).

(iii) Since equalizers and products in the category Set, we can consider presheaves
and sheaves with values in Set.

Definition 3.22 (Morphism of presheaves, morphism of sheaves)
A morphism between two (pre)sheaves is a natural transformation between them.

Proposition 3.23 (Kernel of a morphism of presheaves)
Let F, G be two presheaves on a site 7 and o : F — G be a morphism between
them. Then, the kernel of o exists.

Proof. For each object U in 7 we let K(U) = ker ay (recall that the component
ay : F(U) — G(U) is a morphism in an abelian category, so we may consider
its kernel). Let ¢ : V' — U be a morphism in .7 and consider the commutative

diagram:
K(U) Y~ F(U) G(U)
\ v
} lF(w o Gle)
A i 0
K(V) Y - F(V) T/ G(V)
ay

We find that ay o F(¢) o iy factors through 0. Hence, the universal property
of the equalizer gives rise to a map K(y¢) from K(U) to K(V). Then, one can
check that K is indeed a functor.

Now, if H is another presheaf and if § : H — F' is a morphism such that
aof = 0, then all the components o o By are zero and the universal properties
of the equalizers induce the components of a unique morphism v : H — K as

required. O
Remark 3.24

If .7 is a small category, one can show that the presheaves on .7 form an abelian
category.

Definition 3.25 (Sheaf associated to a presheaf, sheafification)
Let T be a site and let F' be a presheaf on T with values in some abelian category
€. Suppose there exists a sheaf F* on 7 with value in € and a morphism
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of presheaves o : F — F7T which satisfy the following universal property:
for every sheaf G on T with values in € and every morphism of presheaves
B: F — G, there exists a unique morphism of sheaves v : F™ — G such that
the following diagram commute:

In this case, we say that FT is the sheaf associated to F (or the sheafification

of F).

Remark 3.26
If the sheafification of a presheaf F' exists, then it is unique up to isomorphism.

Theorem 3.27 (Sheaf associated to a presheaf)
Let € be a site and let F' be a presheaf with values in Ab or Set. Then, the
sheafification of F exists.

Proof. See [DGT70, Theorem 4.3.14] and [Tam94, Theorem 1.3.1.1]. O

Remark 3.28
For sheaves on topological spaces, the construction is detailed in [Har77, I1.1.2].

3.3

Grothendieck topologies and schemes

To define the coverings of a scheme, we restrict ourselves to classes of morphisms
E which satisfy the following conditions:

(i)
(i)
(iii)

all isomorphisms are in F;
F is closed under composition;

F is closed under base change.

Throughout this section, ' denotes a class of morphism which satisfies the
three conditions.

Example 3.29
The following classes of morphisms are stable under composition, base change
and contain all isomorphisms:

open immersions, F/ = zar;
flat morphisms (see Proposition 2.20);
étale morphisms (see Proposition 4.39), E = ét;

morphisms (locally) of finite type (see Proposition 1.25).

Definition 3.30 (E-morphism)
A morphism which is in the class E is called an E-morphism.

Definition 3.31 (Slice category)
Let € be a category and C' € € an object of €. The slice category of € over C
is the category which consists of:

(4)

morphisms BLC i € as objects;
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(i) compatible morphisms as morphisms: if AL>C and BLC are two
morphisms in €, a morphism between them is a morphism f: A — B
such that the following diagram commute:

A—1 .
PN
C
We denote this slice category by €/C.

Let X be a scheme and € be a full subcategory of Gch/X (this means that if
Y——=X~<—Y" are two objects of €/X and if f: Y — Y’ is a compatible
morphism in Sch/ X, then f is a morphism in €/X) which satisfies:

(i) /X is closed under fibred products:

(ii) if Y — X is an object of ¥/X and V — Y is a morphism of E, then
the composition V. — X is in ¢/X.

Definition 3.32 (E-covering)
LetY € €/X. A family of E-morphisms {ViLY} 1s called an FE-covering
of Y if U; ¢i(Vi) =Y.

Definition 3.33 (E-topology)
The class of all E-coverings of all objects Y of € /X is called the E-topology
on€/X.

Proposition 3.34
The category € /X together with its E-topology is a site.

Notation 3.35
We denote by (¢/X)g, or Xg, the category /X with its E-topology.

Definition 3.36 (Zariski site)
The (small) Zariski site, denoted X 4, 18 (6¢ho;/X) 2ar-

Remark 3.37
If we consider the Zariski site X,,, and if we identify each open immersion
U — X with its image, we get the usual Zariski topology.

Example 3.38 (Constant presheaf)

Let A be an abelian group. To every object U — X with U # 0, we let
F{U) = A. Wealsolet F(0) = 0. If ¢ : V — U, with V # 0, we set
F(p) =1ida. It is clear that F' is a presheaf on X which is called the constant
presheaf. Note that this is not necessarily a sheaf. Consider for example the
case where X is a non-connected topological space, say X = U UV for two
non-empty open sets U and V of X. Elements in F(U) and F (V) are mapped
to zero in F(UNV) = F(0) = 0. Hence, if A is not trivial two distinct elements
a,b € A won'’t satisfy the gluing axiom. One can show that if A is endowed
with the discrete topology, then the sheafification F'* of F (see Theorem 3.27)
satisfy

FH(U) = {f U — A f continuous},

for each open set U of X. In particular, if some open set U is connected, then
FH(U) = A.

25



26

3 GROTHENDIECK TOPOLOGY

3.4 Pullback

Let f : X — Y be a morphism of schemes. The morphism f induces a functor
from the category of étale Y-schemes to the category of étale X-schemes: an Y-
scheme Y is sent to X xy Y’. Now, suppose that g : Y/ — Y is a morphism
of Y-schemes. Then, we have the following commutative diagram:

X xy Y’ Y’

A

X——Y

Since the structural morphisms of Y’ and Y are étale, then so are px and
Px. Since p'y = px o fy+, fy is étale (see Proposition 4.42). Hence, we get a
covariant functor from the category of étale Y-schemes to the category of étale
X-schemes.

Now, one can check that f induces a morphism of topologies (see Definition
3.14).
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4.1 (Co)tangent space

Let M be areal smooth manifold of dimension n. Let p € M and let T}, M denote
the tangent space of M at p. Let O, be the ring of germs of smooth functions
around p and let m;, be its maximal ideal, which consists of class of functions
vanishing at p. A derivative v € T, M gives rise to a map m, — R: a smooth
function f is mapped to its derivative v[f]. Since v[f-g] = v[f]-g(p)+f(p)-v|g] =

0, this map gives rise to an R-linear form ®(v) € Hom (mp/mng) Hence,

we have an R-linear map ® : T, M — Hom (mp /mi 7R>. This map is clearly
injective. For the surjectivity, we fix a basis {81,1, R azn} of T, M and the dual
basis {d:cl, e ,dx”}. Now, if « is an element of Hom <mp/mz2)7 R), then we let
v; = a(dz’) and v = >, v;0,:. This vector v satisfies ®(v) = a. Therefore,
we have an isomorphism of R-vector spaces T, M = Hom (mp /m129 , ]R).

This motivates the following definition:

Definition 4.1 (Zariski tangent space, Zariski cotangent space)

Let X be a scheme and x € X. The Zariski cotangent space at x is the x(z)-

vector space Mg /2. The Zariski tangent space is the dual of the cotangent
€T

space.

Remark 4.2

Let f: X — Y be a morphism of schemes and let z € X and y = f(x). The
morphism fﬁ restricts and corestricts to a morphism m, — m,, which gives
rise to a morphism m, /mz — My /mi Hence, a morphism of schemes induces

a map on the cotangent spaces.

4.2 Differentials

4.2.1 Module of relative differential forms

Definition 4.3
Let M be a B-module where B is an A-algebra. We say that d: B — M is an
A-derivation of B into M if d satisfies:
(i) d is additive;
(4) d(a) =0, for all a € A;
(4i) d(bb') =b'd(b) + b(db') (the Leibniz’s rule).

Remark that such a derivation is A-linear.

Definition 4.4 (Module of relative differential forms)

Let B be an A-algebra. A pair (d,QB/A), where d : B — Qp/a is an A-
derivation, is called the module of relative differential forms of B over A if it
satisfies the following universal property:

for each A-deriwation d' : B — M, there exists a unique morphism of B-
modules f: Qg4 —> M such that the following diagram commutes

BLM

1

s
s
O f

Qp/a
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Example 4.5

Let K be a field and let B be the K-algebra K[z]. Then, we have Qg,)/x =
K[z]. Indeed, we set d(z) = 1 and then we extend the map by K-linearity
and set d(z™) = n - d(z"~ ') (for the Leibniz’s rule). Now, if we have another
K-derivation d' : K[x] — M, then we set f(1) = d’(z) and extend the map by
K-linearity and via the Leibniz’s rule.

More generally, we have the following example.

Example 4.6

Let A be a ring and consider the A-algebra B = A[x1,...,z,]. Then, we have
Qp/a = B™  the free B-module of rank n. We want to show that B(™ satisfies
the universal property. First, we define

d:B— B"

0b
b+— (8%) ,
b

where 7> denotes the formal derivative of b with respect to z;. If d’ : B —

M is another derivation, then we must have d’(b) = > 1", %d'(fm) (by the
Leibniz’s rule and the A-linearity of d'). Therefore, we define f; : B — M
by fi(b) = b-d'(z;). The morphism f : B(™ — M induced by the f; is the

required morphism.

Example 4.7

Let k be a field and K be a separable algebraic extension of k. Then, we have
Qg = 0. To see this equality, consider some a € K and the polynomial
f € Kk[t] such that f(«a) = 0 and f/'(«) # 0. Then, using induction, Leibniz’s
rule and k-linearity, we get d(c) - f'(c) = d(f(a)) = 0, which implies d(a) = 0.

Proposition 4.8
Let B be an A-algebra. Then, the module of relative differential forms Qp/a
exists.

Proof. Let I denote the free B-module generated by the symbols {d(b) 1be B}
and let K be the sub-B-module of F' generated by

{a:a € AYU{d(BY)—b d(b)—bd(V') : bt € BYU{d(b+b)—d(b)—d(b') : b,¥ € B}.

We define d : B — F/g, which maps any b € B to d(b). Then, one can check
that the quotient F'/k has the required properties. O

Proposition 4.9 (Functoriality of Q_,4)
Let ¢ : B — C be a morphism of A-algebras. Then, there is a canonical
morphism of B-algebras ¢ : Qp/a — Qcya-

Proof. It is sufficient to note that do : B — Q¢,4 is an A-derivation of
B. O

Corollary 4.10
We have a canonical morphism o : Qp 4 @p C — Q¢ a-

On the other hand, we have a morphism 3 : Q¢4 — Q¢/p.

Proposition 4.11
Let B and C be two A-algebras. The sequence

a B
QB/A ®pC QC/A QC/BHO

s exact.
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Proof. See [Liu06, Proposition 6.1.8]. O

Proposition 4.12
Let A" and B be two A-algebras and let B = B ®4 A'. Then, we have the
isomorphism Qpr/a = Qp/a @p B’

Proof. First, we note that Qp/4 ®p B’ = Qp/q ®4 A’. We want to show
that this B’ module satisfies the universal property of the module of relative
differential forms of B’ over A’. First, we define

<,0:B><A/—>QB/A®AA/
(b,a') — d(b) ® ',
where d : B — (g, is the A-derivation. This A-bilinear map induces a
morphism ¢ from B’ = B ®4 A’ to Q4 ®4 A’. Moreover, it is easy to
see that ¢ satisfies the Leibniz rule and is A’-linear. Now, suppose we are

given an A’-derivation 1) : B’ — M. We have to show there exists a unique
n:Qpja®a A" — M such that no@ = 1. We define the following morphism:

Vi Qpax A — M
(d(b),a’) — p(b@d’).

One can check that it is well-defined and A-bilinear. Thus, we get a unique
morphism 7 such that the following diagram commutes

B’ M

Qpja©a A <———Qpa x A,

as required. O

4.2.2 Global definition of the module of the relative differential
forms

Recall 4.13
Let A be a ring and M be an A-module and let X = SpecA. The sheaf
associated to M on Spec A, denoted by M, has the following properties:

(1) M is an Ox-module;

(ii) for each p € Spec A, we have (M) = My,

i)
(ili) for any f € A, the Ay-module M(D(f)) is isomorphic to My;
(iv) M(X)=M.

See [Har77, I15] for the construction and the properties of M.

Now, if % is any Ox-module, we say that .% is quasi-coherent if there exists an
affine covering U; = Spec A; of X such that for each i there exists an A;-module
M; with 9’|U_ = M;. If each M; is a finitely generated A;-module, we say that
F is coherent.

Now, we would like to generalize the construction of the module of relative
forms: if f: X — Y is a morphism of schemes, we would like to define an
Ox-module §2x/y such that:
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(i) if U € X and V C Y are two open affine subsets such that f(U) C V,
then Qv |, = (Qoxwvoy(m) ;
(ii) for each x € X, then (Qx/y)x 2 Q0x /Oy ()"

To do this, there exists two construction. The former reproduces the construc-
tion of the structural sheaf on an affine scheme Spec R (we associate to each
open set a collection of functions satisfying certain properties), while the lat-
ter is more abstract. The first construction is presented in [Liu06, Proposition
6.1.17]. To introduce the second one, we present another definition of Qp,4 for
an A-algebra B.

Proposition 4.14 (An alternative definition of Qp/4)
Let B be an A-algebra. Let A : B®a B — B, which sends any x ® y to xy,
and denote by I the kernel of A. Then, I/12 = Qp/4.

Proof. We want to define the morphisms ¢, 7,1 and ¢ (in this order) such that
the following diagram commute:

A d Qa5
l /
1 7

I/r2,

where d : A — Qu/p and 7 : [ — /72 are the canonical maps. Since we
want 7 o € to be an B-derivation, we define ¢(b) = 1 ® b — b ® 1. Then, it is
easily seen that £(b) € ker A and that e is an A-derivation. Therefore, we get
an induced map 1 : Qg4 — I/12. Now, if Y ;@ y; € I, we have ) x;y; = 0.
Thus, we can write

domi@y=Y (vi@y—vyi®1) = zic(y).

Hence, we define ¢( Y z; ® ;) := > a; d(y;) and one can check that 1 passes
to the quotient. Therefore, we get ¢ : I/;2 — Qp /A~ Finally, n and i are
inverses of each other. O

Before giving the definition, we recall a few results.

Definition 4.15 (Ideal sheaf of a closed immersion)
Let f: X — Y be a closed immersion. Then, we define the ideal sheaf of X,
denoted Jx )y, as the kernel of the morphism it : Oy — f.0x.

Proposition 4.16
LetY be a scheme and X be a closed subscheme of Y. Then, Jx,y is a quasi-
coherent sheaf of ideals on Y.

Proof. See [Har77, Proposition I1.5.9]. O

Proposition 4.17

Let X and Y be schemes and let f : X — Y be a morphism of schemes. Then
the diagonal morphism A : X — X Xy X induces an isomorphism from X
onto A(X) which is a locally closed subscheme of Y (i.e., a closed subscheme
of an open subscheme W of Y).

Proof. See [Har77, Corollary 11.4.2]. O
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Definition 4.18 (Sheaf of relative differential forms)
Let f: X — Y be a morphism of schemes and let W be as in the previous
proposition: this means that we have the following factorization of A

X A

XXyX

N

w

Let Tx vy be the ideal sheaf of g on W. Then, we define the sheaf of relative
differential forms, denoted Q2x/y, as g* (jx/y/j)%/y).

Remark 4.19
Let ¢ : A — B be a morphism of rings and f : Spec B — Spec A be the
corresponding morphism. Then, we have Qgpec B/ Spec 4 = (QB/A)N

Example 4.20

We know that if ¢ : A — B is surjective, then Qg4 = 0. In particular, if
¢ : A — B = AJJ is the canonical map, then Qp,4. This implies that if
Y =SpecRand f: X — Y is a closed immersion, then Qy/y is trivial.

Example 4.21
If X = A%, then we have Qy/;, = (’)g?), the free Ox-module of rank n (see
Example 4.6).

4.3 Etale morphisms

In this section, we follow [Mil80]. In particular, every scheme is assumed to be

locally noetherian!.

Definition 4.22 (Unramified morphism)

Let f: X — Y be a morphism locally of finite type. Let x € X and y = f(x).
We say that f is unramified at = if OX’I/myOX,z s a finite separable extension
of k(y), where myOx , denote the ideal generated by the image of m, under the
ring homomorphism ff : Oy,y — Ox . We say that f is unramified if it is
unramified at every point of X.

Remark 4.23
The condition “Ox /my(’) X 158 finite separable extension of k(z)” is equiva-
lent to the two conditions:

(i) k(z) is a finite and separable extension of x(y);
(ii) myOX,x = M.

Proposition 4.24

Let f : X — Y be a morphism of schemes of locally finite type. Let x € X,
y = f(z) and the corresponding point ' € X,. Then, f is unramified at x if
and only if ' X, — k(y), the morphism given by the universal property of
the fibred product, is unramified at x'.

Proof. Follows from Proposition 1.15. O

Definition 4.25 (Etale morphism)

Let f : X — Y be a morphism locally of finite type and let x € X. We say
that f is étale at x if f is flat and unramified at x. We say that f is étale if it
is €tale at every point of X.

'Recall that a scheme is locally noetherian if it can be covered by the spectras of noetherian ring.
Moreover, a scheme X is locally noetherian if and only if for every open affine subset Spec R = U
of X, R is a noetherian ring (see Proposition [Har77, I1.3.2]).
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Example 4.26
The morphism Spec I — Spec K corresponding to a finite field extension
K C F is unramified (and hence étale) if and only if F' is separable over K.

Example 4.27
A closed immersion, which corresponds locally to a homomorphism R — R/,
is unramified.

Example 4.28

Let K be a field, @Q € KJt] be a monic polynomial and consider the morphism
f X = Spec K[t]/<Q> — Spec K. Let x € X, which corresponds to the
ideal (P) /<Q>, where P is an irreducible factor of @), and denote by y the
corresponding point of Spec K. Then, f is unramified at z if and only if P is
separable and P*  Q if k > 1. In particular, f is unramified if and only if

~

@ is separable. For the first condition, we note that x(x) = KJz] /< p)- Hence,

k(z) is a finite separable extension of x(y) if and only if P is separable. Now,
suppose that Q = P - S, with P {S. Since m,Ox , = 0, we have to show that

m; = 0. But an element in m, is of the form g'F:zgf), for some g, h € K|[t] with
h ¢ (P). Since Pt S, we have

g P+@) g P S+
@ hSt@

and thus m, = 0. Hence, f is unramified at z if P is separable and is a simple
factor of . Now, suppose that Q = P¥ .S with P{S and k > 1. In the ring
(K[x]/<Q>)<P>/<Q>, the element P is not zero and is not invertible. It follows
that m, # 0 and thus myOx , # m,. Therefore, f is not unramified at x.

Since K|t] /<Q> is a free K-module of rank equal to the degree of @, the morphism

I K[t]/<Q> — Spec K is flat. Hence, it is étale if and only if ) is separable.

Example 4.29
Let K be a field of characteristic different from 2 and consider the projection
of the parabola f : X = Spec K[x,y]/<y2 — ) — Y = Spec K[z]. Let a be

a closed point of Y. Then, we find X, = Spec (K[y]/<y2 _ a)) (see Example

1.12). Now, we have three cases:

a=0 We have X, = Spec (K[y]/<y2>> and the morphism Xy — K is rami-
fied.

a = b? We have X, = Spec (K X K) and the morphism X2 — K is unram-
ified.

a is not a square We have X, = Spec F', where F is a separable extension of
degree two of K. Hence, X, — K is unramified.

Using the previous proposition we see that f is unramified at (a,b) provided
that (a,b) # 0.

Example 4.30

Let f: X = Spec K[m,y]/<$2 —y) — Y = Spec K|z] be the projection of the
parabola on the z-axis. If @ is an element of K, we consider the morphism
fa : Xa — Speck(a) (given by the universal property of the fibred product)
which is, up to isomorphism, f, : Spec K — Spec K. Hence, f is unramified
at a (see Proposition 4.24). Now, on the fiber over the generic point (0) of Y,
we get the morphism Spec K[z] — Spec K[z]. Hence, f is unramified.

Example 4.31
Let d be a square-free integer and consider the number field K = Q[v/d] and
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the ring of integers Ok of K, that is

Z[V4d) if d = 2,3 (mod 4),
=1z [154] ira=1 (mod 4).

We consider the morphism f : X = Spec O — SpecZ and want to determine
at which points f is unramified. Let p € P and suppose d = 2,3 (mod 4). Then,
we have

X, = Z|Vd] @z F, = Z[‘”]/(;UQ —d) ®z Lipz, = Fp[m]/@:Q —d)-

(i) If p| d, then we have F,[x] /<x2>’ which is ramified over F, (see Example
4.98).

(ii) If pfd and d is a square mod p, then 2% — d is separable in F,[z] and so
Fp[x]/<m2 — d) s unramified over F,,

(iii) If d is not a square mod p, then 22 — d is irreducible and it is separable if
p#2

Hence, if p | disc(K) = 4d, then f is ramified at p. If p 1 4d, then it depends on
the Legendre symbol and on if p = 2 or not.

4.3.1 First properties of étale morphisms and other character-
izations

We recall the three following definitions.

Definition 4.32 (Jacobson ideal)
The Jacobson radical of a ring is the intersection of all its maximal ideals.

Definition 4.33 (Separable algebra)
Let K be a field and A o K-algebra. We say that A is separable (over K) if

the Jacobson radical of A = A ®x K is zero, where K is the algebraic closure
of K.

Definition 4.34 (Separably closed field) o
We say that a field K is separably closed if every separable element of K belongs
to K.

Proposition 4.35
Let f : X — Y be a morphism of locally finite type. The followings are
equivalent:
(i) f is unramified.
(i) For ally €Y, the morphism X, — k(y) is unramified.

(iii) For every morphism Spec K — Y, with K separably closed, the mor-
phism X Xy Spec K — Spec K is also unramified (all the geometric
fibers of f are unramified).

(iv) For everyy € Y, X, has an open covering by spectra of finite separable
k(z)-algebras.

(v) For every y € Y, X, is an amalgamated sum [[Spec K;, where the K;
are finite separable extensions of k(x).

Proof. See 4.24 for (i) < (i) and [Mil80, Proposition 3.2]. O

Proposition 4.36
Let f : X — Y be a morphism of locally of finite type. Then, the followings
are equivalent:

33
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(i) f is unramified;
(i) Qx/y =0;
(iii) the diagonal morphism Ax,y : X — X xy X is an open immersion.
Proof. (i) = (i1) Let » € X and y = f(z). We know that Q) /() = 0 (see
Example 4.7). Since s(x) = Ox ; ®o,., k(y), Proposition 4.12 implies
0= Qu@)/ny) = Lox. /0y, = Oxaki(2).

Since f is locally of finite type, then Qo . 0, is a finitely generated
Ox -module and Corollary A.6 implies 0 = Qo /0., = (Qx/y)
Hence, Qx,y = 0, as required.

z

(i1) = (44i) Let W and Jx/y as in Definition 4.18. By hypothesis, we have the
equality (jX/Y)w/(jX/Y)2 = 0 and Corollary A.7 implies that (7x,y), =

€T

0 for every x € X. Hence, (jx/y) is zero on an open subset V of U con-
taining X . Therefore, we have (X,0x) & (V, OXXYX’U)7 as required.

(#i1) = (i) First, suppose that f : X — Spec K, where K is some algebraically
closed field. Let x € X be some closed point of x. We have the inclusion
K — k(z) which means that K = k(x), since K is algebraically closed.
Hence, we get a section g : Spec K — X of f whose image is {z}. Now,
we have the following commutative diagram:

X— 2  Xxy X

4 T(gOﬁid)

{a} ———X

Now, since A is an open immersion, {z} is open in X. Furthermore, the
morphism {z} = SpecOx,, — Spec K satisfies the property that the
induced morphism Spec Ox , — Spec (OX,:c RK OX,:c) is still an open
immersion. Since Ox , is an artinian ring with residue field K, the ring
Ox » ®K Ox  has only one prime ideal and Ox ; ®x Ox,» — Ox o must
be an isomorphism. Considering the dimensions over K gives Ox , = k.
Hence, m;, = 0 and f is unramified at z. Finally, Proposition 4.35 gives

the required result.
O

Remark 4.37
In the last proof, we use for the first time the hypothesis of local finiteness.

Proposition 4.38
Let f: X — Y be an étale morphism and let x € X and y = f(x). Then, we
have my/mi Ru(y) K(x) = mx/mi.

Proof. We compute
my/mf/ Bk (y) H(I) =my ®Oy,y OX,ﬂC/mx = (my ®Oy,y OX,ac) R0x x (QX,I/]nI
= (my ®oy, Ox.2)/(m, (m, ®oy, Ox..))

Since f is flat at z, we have my ®o, , Ox . = myOx,. Finally, since f is
unramified at x, the last term is isomorphic to mg /2. O
x

Proposition 4.39
Let f: X — Y and g : Y — Z be two morphisms locally of finite type. Then:
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o If f is an open immersion, then f is étale.
o If f and g are étale, then so is go f.

e Any base change of an étale morphism is étale.

Proof. By Proposition 2.20, we only need to prove “unramified part” of the
statements. Let x € X, y = f(x) and z = g(y).

(i) Obvious.

(ii) If k(x) is separable over x(y) and k(y) is separable over k(z), then k(x) is
separable over x(z). The second part is obvious.

(iii) Let g : Y/ — Y be some morphism of schemes. By Proposition 4.35, to
show that [’ : X xy Y/ — Y is unramified is equivalent to show that
for each separably closed field K and each morphism Spec K — Y, the
morphism X Xy Y’ Xys Spec K — Spec K is unramified. But since we
have the isomorphism X Xy Y’ xy/ Spec K = X Xy Spec K, this is the
case by the assumptions on f.

O
Proposition 4.40 (Jacobian criterion)
Let A be a noetherian ring and let fi,..., fn € Alz1,...,2,] be polynomials.
Then, Spec Az, . .. ,asn]/<fl7 S is étale over Spec A if and only if the de-
terminant of the Jacobian matric g:fj» is a unit in Alzy, ... xal /i fa)-
Proof. See [Mil80, Example 1.3.4]. O

The Jacobian criterion is really useful to determine if a morphism is étale
or not.

Example 4.41

The morphism Spec Q[z, y]/<y2 — g) — Spec K|[x] is not étale since y is not a
unit in (@[w,y}/<y2 — z)- The morphism Spec Q[y,x]/@Z — y) — Spec Klx] is
étale.

4.4 Etale topology

Proposition 4.42
Let f: X — Y and g: Y — Z be morphisms of schemes. Suppose that g o f
is €tale and g is unramified. Then, [ is étale.

Proof. See [Mil80, Corollary 1.3.6]. O

Corollary 4.43
For a scheme X, Gcby, /X is a full subcategory of Geh/X.

Definition 4.44 (Zariski site)
The (small) étale site, denoted Xy, is (Schy/X)er- The (small) Zariski site,
denoted X ,qr, 15 (6¢ho;/X) zar-

Proposition 4.45
Let X be a scheme. Then, Xg is a site.

Proof. We check the three conditions:

(i) We know that all isomorphisms are étale.

35
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(ii) Let {UZ-L>U }1 be an étale covering and let ¢ : V' — U be a morphism.
We know (Proposition 4.39) that the morphisms V x¢y U; — V is étale
for every i. To show that these morphisms form a covering, consider v € V/
and let u = p(v). Now, pick ¢ € I such that there exists some v’ € U;
with ¢;(u") = u. The corollary 1.17 implies that there exists v’ € V xy U;
which is mapped to v under the morphism V xy U; — V, as required.

(iii) Comes from Proposition 4.39.
O

Remarks 4.46 (Presheaves and sheaves on Xt)
Let F be a presheaf on Xg;.

(i) Unlike with the Zariski topology, it might exists many morphisms from
U to X. In this case, there will be many restriction maps from F(X) to
FU).

(ii) We recall the condition for F' to be a sheaf: for every covering { U~ U }Z
the following diagram (see Remark 3.19 for the definition of n and %) is
an equalizer

F(U) —TLFW) == 11, F (Us %0 Uj).

Since the ¢; are not necessarily monomorphisms, we may not have the
isomorphism U; xy U; = U;. Hence, the case where ¢ = j is not trivial
(again, unlike in the Zariski case).

(iii) Let F be a sheaf. Since the empty set of morphisms form a covering of
the empty set, the condition says that we have an exact sequence

F0) —0—x<

The universal property of the equalizer implies that F()) is a terminal
object in €. Hence, we have F(}) = 0. We note that this result holds
also for sheaves over X, .

4.5 The case of Speck

In this section, we state without proof a theorem explaining the relationships
between étale coverings theory and Galois theory. The details can be found
in [Tam94]. Let k be a field and k4 be a separable closure. Let G be the Galois
group of the Galois extension kg/k (with its usual structure of profinite group).

Recall 4.47

Let X be a scheme and k be any field. We denote by X (k) the set of k-points
of X, which is the set of morphisms Speck — X. We know that each k-point
of X corresponds uniquely to a point z € X and a homomorphism of fields
k(x) — k.

The group G acts on the left of X (k) as follows:

G x X(ks) — X(ks)
(9,0) —> g -0 = oo Spec(g),

where Spec(g) : Spec(ks) — Spec(k;) is the image by the functor Spec of g.

Let H be an open subgroup of G and let k&’ = k, the fixed field of H. Then, we
can identify X (ks) with X (k’). Since H is a closed subgroup of G (recall that
in a compact topological group, any open subgroup is closed), £ is a finite exten-
sion of k. The inclusion ¥’ — k, induces a morphism Spec k; — Spec &’ which



4.5 The case of Spec k

induce the inclusion X (k') C X (k;). Moreover, since X (ks) = U X (ks)?, as
H goes through the set of open subgroups of G, G acts continuously of X (k).

Before giving the main result, we recall that a topological group G gives rise
to a site T (see Example 3.17).

Theorem 4.48
The functor which send an (Speck)-scheme X' to X'(ks) is an equivalence of
topologies between the étale site (Spec k) of Speck and the site Tg.

ét

Proof. See [Tam94]. O
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5 Fpqc topology and the descent problem

In this section, we follow the paper [Broll]. Additional information and proofs
can be found in |G, Exposés VIII].

5.1 Some examples for the descent problem

Before giving the general setting of the descent problem, we give two examples:
gluing morphisms and gluing schemes.

5.1.1 Gluing morphisms for the Zariski topology

Let U be a scheme and let X and Y two U-schemes. If {U;}; is a covering of U
for the Zariski topology, we let X; and Y; the preimages of the U; under the ¢;,
that is X; = X xy U; and Y; =Y xy U;. Now, suppose we are given a family
of morphisms ¢; : X; — Y; which agree on the intersection X; N X, (recall
that X; N X, = X; xx X;). We know that there exists a unique morphisms
of schemes ¢ : X — Y such that gp| x, = i We can rephrase this result as
follows:

Proposition 5.1
Let X be a schemes and let X andY be two S-schemes. Consider the following
functor
F :6&ch(S) — Ens
Ur— Homgch(U) (X xsgUY Xg U)

Then, I is a sheaf for the Zariski topology.

5.1.2 Relative gluing schemes for the Zariski topology

Let U be a scheme and let {U;}; be a Zariski covering of U. As usual, we denote
by U;; and Ui the sets U; N U; and U; N U; N Uy, for every 4, j, k. For each 7,
we consider some U;-scheme f; : X; — U;. The goal here is to glue the X; to
get an U-scheme X. Suppose that we have the followings:
(i) For all 4,j, we have an isomorphism ¢;; : fj_l(Uij) — f71(Ui;), where
fj_l(Uzvj) denotes the pullback of the scheme U;; under f;.

(ii) For all 4, j, k, we have the cocycle condition

PYik = Pij © Pjk

which means that the following diagram is commutative:
i Uign)

;N
Uijk)

Uijk)

%)
fifl( 1jk)-

Then, there exists a unique U-scheme f : X — U and isomorphisms ¢; :
f~Y(U;) — X; which make the following diagram commutative

et

FHUij)
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5.2 The fpqc site

Definition 5.2 (Quasi-compact)

A morphism of schemes f : X — Y is quasi-compact if there exists an open
covering of affine subsets V; of Y such that f=1(V;) is compact (recall that we
do not suppose any separateness or Hausdorff condition) for each i.

Definition 5.3 (Fpqc morphism)
A morphism of schemes f : X — Y is fpqc if it is faithfully flat (see Definition
2.17) and quasi-compact?.

Proposition 5.4
The composition of two quasi-compact morphisms is quasi-compact.

Proof. See [GDT1, L1.6]. O

Proposition 5.5
The base change of a quasi-compact morphism is quasi-compact.

Proof. See [GDT71, 1.6]. O

The last proposition, Corollary 1.18 and Proposition 2.20 now imply.

Proposition 5.6
The base change of a fpgc morphism is again fpgc.

Definition 5.7 (The fpqc site)
Let S be a scheme. The fpqc site on S is the category &Sch(S) together with the

following of coverings: a collection {U¢L>U} is a covering of the S-scheme
U if the induced morphism ], Uy — U s fpgc.

Proposition 5.8
The fpqc site is indeed a site.

Proof. (i) Tt is clear that isomorphisms are fpqc coverings.

(ii) Let {Ui—>U} be a fpqc covering and V' — U. Since {U¢—>U} is
an fpqc covering and since the property of being fpqc is stable under base
change, the morphism (]_L Ui) Xy V. — V is also fpqc. Therefore, the
morphism [, (Ui xy V) — V is also fpqc, as required.

(iii) Let {U,-i>U}i € Cov(Z) be a covering and let {Vij&Ui }j €
Cov(7) be coverings for every i. We have show that the morphism
]_[i’ ;Vij—Uls fpgc. But this morphism factors through

v, —[lvi—u
i,j i

Now, if a family of morphisms X; — X is quasi-compact, then so is
the morphism [], X; — X and the same holds for the flatness and the
surjectivity. Hence, our morphism is fpqc, as required.

O

2The term fpqc comes from the French “fidélement plat et quasi-compact”.
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5.3 The descent problem

Definition 5.9 (Contravariant pseudo-functor)
Let € be a category. A contravariant pseudo-functor .# on € consists of the
followings:

(i) For every object U of €, a category F(U).
(i) For every morphism f:U — V in €, a functor f*: F(V) — F(U).
(#i) For every object U in €, an isomorphism (of functors) ey : (idy)* —
(iv) For every pair of morphisms U*f>V*g>W, an isomorphism (of func-
tors) ayg: frogT=(go f)*: F(W)— F(U).
Moreover, F have to satisfy the following “compatibility conditions”

(i) For every morphism f : U — V in € and every object nn in F(V), we
have

(cidy.z), = (foev),
(af,idy)n = (f* O€v)n :

g h

(it) For every triplet of morphisms U ! % w T in € and every

object n € F(T), we have a commutative diagram:

(a ’g)h* n
frogtoht () — D (g0 f)* o h*(n)

7 ((onn),) (),

fro(hog) (n) ———=—>(hogof)(n)

)

Example 5.10

Let S be a scheme and let € be the category of S-schemes. To every S-scheme
U, we associate the category €oh(U) of quasi-coherent modules over U. Now,
if f: U — V is a morphism of S-scheme, f*: €oh(V) — Coh(U) is the usual
pullback: a quasi-coherent module .# over V is mapped to f~1(.#)® 10, Ov.

Example 5.11

As before, let € denote the category of S-scheme. To any S-scheme U we
associate the category of U-schemes. Now, if f : U — V is any morphism of
S-scheme, a V-scheme X is sent to U xy X. If g : X — X’ is a morphism of
V-schemes, then f*(g) : U xy X — U xy X' is the base change of g.

The next definition generalizes the relative gluing of schemes for the Zariski
topology.

Definition 5.12 (Descent data)

Let € be a site and F a pseudo-functor on €. Let U be an object of € and
letU = {Ui—>U} a covering for U. Fori,j,k, we denote by U;; the fibred
product Uy xy U; and by Uyji the product U; xy U; Xy Ug. Now, we have the
canonical projections:

pry : Uy — U;, pry: Uy — Uy,
@1 Uik — Ui, q:Uij — Uj,  q3: Upjx — Uy,
Prys: Uz’jk — Uij, Praog : Uijk — Ujk, Pris: Uijk — Uik~
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The descent problem

For every i, let & be an object of F(U;). A descent data for the family {&;} is
a collection of isomorphisms

@ij i pr5 & — pri&;
in the category F (Ui;). Since we have
A~ *
prigoprs = (pryoprig) =gq; : F(Uyjk) — F (Us),
and similarly for other indices, we ask that we have

pris (¢ir) = pris (wij) o pras (vik) : 65 (&) — a1 (&),
up to the isomorphisms, for every triplet (i,j,k). Note that this is the gener-
alization of the cocycle condition of Section 5.1.2. We say that ({&;},{pi;}) is
an object with a descent data for the covering U = {UiHU}.

Definition 5.13 (The category of objects with descent data with respect to a
covering)

Let ({&},{@i;}) and ({n:},{¥i;}) be two objects with descent data for a cov-
eringU = {U;—=U }. A morphism from ({&},{¢i;}) to ({m:}, {¥i;}) is a
collection of morphisms «; : & — n; in F(U;) such that the following diagram
commute for every i,j:

pr5 (o)
prj & ———> prin;

Pij l l"/’i]’

pri & ———= prin;.
prj (o)

We denote by F(U/U) the category of objects with descent data for the covering
Uu.

Example 5.14 (From an object to a descent data)
Let £ be an object of % (U). We can construct an object with a descent data

for the covering U = {Uii>U} as follows:

o Welet & = 7 ()

e Since ¢; o pr; = @, o0 pry, we get an isomorphism ¢;; : pr3§; — pri & via
Opry p; AN Qpry -

Now, if ¢ : £ — 1 is a morphism in .% (U), we get a morphism {a; : & — 7}

between ({&}, {¢i;}) and ({m;}, {¥i;}) by letting a; = ¢} (¢). Since each ¢} is

a functor, we have a functor from .#(U) to .Z (U /U).

Definition 5.15 (Effective descent data)

A data descent {&;} is called effective if there exists some object & in F(U)
which induces (up to isomorphism) the family {&;} (via the functor defined in
the previous example).

Theorem 5.16

Let U be a scheme and let {Ui—>U} be an fpgc covering of U. The functor
Coh(U) — Coh(U/U) (see Example 5.10 for a definition of €ob) is an equiv-
alence of categories. In particular, every data descent of Oy,-module quasi-
coherent is effective.

Proof. See [BLR90, Theorem 6.4]. O
Theorem 5.17

Let S be a scheme and let X be a S-scheme. Then, the functor of points
hx = Homg(—, X) is a sheaf for the fpgc topology.

Proof. See [Broll, Theorem 2.2.5] O
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6 Fppf topology and representability

6.1 The fppf site

Definition 6.1 (Fppf covering)

Let X be a scheme. An fppf covering of X is given by a family of morphisms
fi + X; — X such that each f; is flat and locally of finite presentation and
such that | J;im f; = X.

Proposition 6.2
The collection of fppf coverings of a scheme S satisfies the conditions of a site.

Proof. We already know that the coverings by flat morphisms satisfy these
properties. Moreover, we know that composition of morphisms of locally of
finite presentation is again locally of finite presentation and that this property
is stable under base change (see, for example, [Aut, Morphisms of schemes,
24.19]). O

Definition 6.3 (The fppf site)
Let S be a scheme. The fppf site on S is the category Sch(S) together with the
foof coverings.

6.2 Fppf topology and representability
In this section, S is a scheme and X is a S-scheme.

Definition 6.4 (Picard group of a ringed space)

Let (X,0x) be a scheme. The set of isomorphism classes of invertible Ox -
modules can be endowed with a structure of abelian group whose law group is
the tensor product over Ox. The details can be found in [Har77, II.6].

Definition 6.5 (Relative Picard functor)
We have a contravariant functor

Px/s : Gch(S) — Set
T — Pic(X x5 T).

A morphism of S-schemes f : T — T’ gives rise to a morphism of schemes

f:XxgT — X xgT' and then to a map from Pic(X xgT") to Pic(X xgT):
an Or-module F is sent to f*(.F), where f* is the usual pullback (see Example
5.10).

Remark 6.6 R
In fact, the morphism f* : Pic(X xgT") — Pic(X xgT) is a group homomor-
phism, but we forget the group structure here.

Theorem 6.7

Let F be a contravariant representable functor on &eh(S) with values in Set.
Then, F is a sheaf with respect to the fpqc topology (and thus for the fppf, étale
and Zariski topology).

Proof. See [BLR90, Proposition 8.1]. O

Since the relative Picard functor may failed to be a sheaf (even for the
Zariski topology) it may not be representable. However, there are some nice
situations where the sheafification of Px/g (see Theorem 3.27) is representable.

Definition 6.8
The sheafification of the relative Picard functor (see Theorem 3.27) is denoted

by Picx/s. For any S-scheme T', we call Picx,g(T) the relative Picard group
of X xg T overT.



6.2 Fppf topology and representability

In order to state the theorem, we recall some notations and definitions.

Notation 6.9
For any ring R, we denote by P} the scheme Proj R[zo, ..., n].

Definition 6.10 (Projective space over a scheme)
Let X be a scheme and let n € N. The projective n-space over X is the scheme
]P)T)L(- = P; X (SpecZ) X.

Definition 6.11 (Projective morphism)
A morphism of schemes f : X — Y s projective if there exists n € N and a
closed immersion i such that the following diagram is commutative

where Py, — Y is the canonical morphism.

Theorem 6.12

Let X and S be two locally noetherian schemes. Let f : X — S be a projective
morphism of finite presentation. Moreover, suppose that f is flat and that
all geometric fibers are integral. Then, the sheaf Picx s is representable by a
separated S-scheme which is locally of finite type over S.

Proof. See [Gro61, Theorem 3.1]. O
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A Some results of algebra

Proposition A.1
Let R be an artinian ring. Then:

(i) Every prime ideal is mazimal.

(i) SpecR is finite.

Proof. (i) Let P be a prime ideal of R and r be any element such that r ¢ P.
Consider the sequence

P+rRDOP+r*RD>...DP+rR>....

Since R is artinian, there exists some n € N such that P+ r"R = P +
r" 1 R. Hence, there exists elements s € R and p € P such that 1 —7rs = p,
that is 1 = p+rs € P+ rR. Therefore, P is maximal.

(ii) The previous point implies that it is sufficient to show that the set of
maximal ideals of R is finite.
Let My,...,M,+1 be different maximal ideals of R. We want to show
that
My-...-Mpy1 SMy-...- M,

Since the M; are maximal ideals, we can find for every ¢ = 1,...,n an
element f; € M; \ M,1. If we have equality in the previous inclusion,
then we have

my ... My, EM1~...-Mn:M1-...-Mn+1 CMn+17
which is impossible.
Now, suppose that the set of maximal ideals of R is infinite. Then, we
can form an infinite strictly decreasing sequence of ideals

My 2 MMy 2 MyMoMs 2 ...,

which contradicts the fact that R is artinian.

Proposition A.2
Let ¢ : A — B be a morphism of rings and I be an ideal of A. We denote by
I°¢ the ideal generated by p(I). Then, we have B/fe = B ®4 A/J.

Proof. We construct the following morphisms:

B4w>B®AA/I

B/Ie<—nB X A/].

First, we define ¢/(b) = b ® T which induces ¥. Then, we set (b,a) = a-b and
this morphism induces 7. Finally, one can check that 1) and 7 are inverses to
each other. O

Lemma A.3
Let M be an R-module. Then, M = 0 if and only if My = 0 for each m €
MaxSpec R.



Proof. If M = 0, then M, 2 M ® Ry, = 0. Now, suppose that M, = 0 for each
m € MaxSpec R and suppose that M # 0. Choose m € M \ {0} and consider
ann(m) = {r € R:rm = 0}. This ideal is a proper ideal of R, since 1 does not
belong to it. Therefore, it is contained in some maximal ideal m. Since 2* = 0,

I
there exists r € R\ M such that r = 0. Contradiction. O

Lemma A.4
Let B be a ring and write Spec B = | J; D(b;), where D(b;) is the principal open
subset B\ V((b;)). If each By, is a A-algebra of finite type, then so is B.

Proof. First, remark that since Spec B is compact, then we can suppose that

the number of the D(b;) is finite. By hypothesis, there exists for each ¢ a set of
elements :k’ of By, which generate By, as an A-algebra. Now, we let C' denote

the A-algebra generated by the bij,bi,bfi, that is: C is a finitely generated
A-algebra, it contains the b; and Cp, D By, for each i. Since the D(b;) form
a covering of Spec B, there exists some b such that 1 = >, b;b;. We let D
the sub-A-algebra of B which contains both C' and the b}. For each natural
number k, taking the k-th power of the expression 1 = )", b;b; gives a relation
1=>, bfd“C for some d;, € D. Now, we want to show that B = D. Let
b € B. For each i, we have % € By, C Cy,. Hence, there exists some ¢; € C' and
some m; € N such that b]"'b = b"¢; for every i. Taking m = maxm, gives us

b=>.(bb")d; x € D, as required. O

Proposition A.5

Let R be a local ring with and let I be an ideal of R. Let M be a finitely
generated R-module. Suppose that T, ..., my € M/rps generate M/mpr as a
R/r-module. Then, mq,...,m, generate M as a R-module.

Proof. Let N be the submodule of M generated by mi,...,m;. Since the
composition N — M — M/iqps is surjective, we have M = N + mM.
Hence, Nakayama’s lemma implies that N = M, as required. O

Corollary A.6
Let R be a local ring with mazimal ideal m and residue field k. Let M be a
finitely generated R-module. Then, M ®pr k = 0 implies M = 0.

Corollary A.7
Let R be a local ring and let I be an ideal of R. Let M be a finitely generated
R-module. Then, I/12 =0 implies I = 0.
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Table of notations

Coh(X)

my
Nat(F, Q)
Pic(X)
rMod
Rng

Sceh
Schy,
Sch,;
Sch(S)

Set

The category of quasi-coherents modules over the scheme X
The category of groups

Height of the prime ideal p

Residue field at =

Maximal ideal of Ox

Natural transformations between the functors F' and G
Picard group of X

The category of left R-modules

The category of rings

Category of schemes

Category of schemes with étale morphisms

Category of schemes with open immersions as morphisms
Category of schemes over the scheme S

The category of sets
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